scholarly journals Index maps in the K-theory of graph algebras

Author(s):  
Toke Meier Carlsen ◽  
Søren Eilers ◽  
Mark Tomforde

AbstractLet C*(E) be the graph C*-algebra associated to a graph E and let J be a gauge-invariant ideal in C*(E). We compute the cyclic six-term exact sequence in K-theory associated to the extensionin terms of the adjacency matrix associated to E. The ordered six-term exact sequence is a complete stable isomorphism invariant for several classes of graph C*-algebras, for instance those containing a unique proper nontrivial ideal. Further, in many other cases, finite collections of such sequences constitute complete invariants.Our results allow for explicit computation of the invariant, giving an exact sequence in terms of kernels and cokernels of matrices determined by the vertex matrix of E.

1970 ◽  
Vol 68 (3) ◽  
pp. 637-639 ◽  
Author(s):  
Larry Smith

Let us denote by k*( ) the homology theory determined by the connective BU spectrum, bu, that is, in the notations of (1) and (9), bu2n = BU(2n,…,∞), bu2n+1 = U(2n + 1,…, ∞) with the spectral maps induced via Bott periodicity. The resulting spectrum, bu, is a ring spectrum. Recall that k*(point) ≅ Z[t], degree t = 2. There is a natural transformation of ring spectrainducing a morphismof homology functors. It is the objective of this note to establish: Theorem. Let X be a finite complex. Then there is a natural exact sequencewhere Z is viewed as a Z[t] module via the augmentationand, is induced by η*in the natural way.


1971 ◽  
Vol 23 (3) ◽  
pp. 503-506
Author(s):  
Hsiang-Dah Hou

Let R be a ring with 1 ≠ 0 and α, β, γ R-endomorphisms of R-modules A, B, and C respectively. We shall denote by M(R) the category of R-modules, and by End(R) the category of R-endomorphisms. For objects α and β of End(R) a morphism λ: α → β is an R-homomorphism such that λα = β λ. We shall denote by Idm(R) the full subcategory of End(R) whose objects are idempotents. Idm(R) is an abelian category, ker, coker and im are constructed in the naive way and henceis exact in M(R) if and only ifis exact in Idm(R), where the domains of α,β, and γ are A, B, and C respectively. One sees that End (R) as well as Idm(R) is abelian.


1973 ◽  
Vol 16 (4) ◽  
pp. 517-520 ◽  
Author(s):  
M. J. Dunwoody ◽  
A. Pietrowski

A presentation of a group G is an exact sequence of groupswhere F is a free group. Let l→S ⊆ F→G→1 be another presentation of G involving the same free group F.


1969 ◽  
Vol 21 ◽  
pp. 684-701 ◽  
Author(s):  
Benson Samuel Brown

Our aim in this paper is to prove the general mod ℭ suspension theorem: Suppose that X and Y are CW-complexes,ℭ is a class offinite abelian groups, and that(i) πi(Y) ∈ℭfor all i < n,(ii) H*(X; Z) is finitely generated,(iii) Hi(X;Z) ∈ℭfor all i > k.Then the suspension homomorphismis a(mod ℭ) monomorphism for 2 ≦ r ≦ 2n – k – 2 (when r= 1, ker E is a finite group of order d, where Zd∈ ℭ and is a (mod ℭ) epimorphism for 2 ≦ r ≦ 2n – k – 2The proof is basically the same as the proof of the regular suspension theorem. It depends essentially on (mod ℭ) versions of the Serre exact sequence and of the Whitehead theorem.


2012 ◽  
Vol 64 (2) ◽  
pp. 368-408 ◽  
Author(s):  
Ralf Meyer ◽  
Ryszard Nest

AbstractWe define the filtrated K-theory of a C*-algebra over a finite topological spaceXand explain how to construct a spectral sequence that computes the bivariant Kasparov theory overXin terms of filtrated K-theory.For finite spaces with a totally ordered lattice of open subsets, this spectral sequence becomes an exact sequence as in the Universal Coefficient Theorem, with the same consequences for classification. We also exhibit an example where filtrated K-theory is not yet a complete invariant. We describe two C*-algebras over a spaceXwith four points that have isomorphic filtrated K-theory without being KK(X)-equivalent. For this spaceX, we enrich filtrated K-theory by another K-theory functor to a complete invariant up to KK(X)-equivalence that satisfies a Universal Coefficient Theorem.


1987 ◽  
Vol 29 (1) ◽  
pp. 13-19 ◽  
Author(s):  
G. J. Ellis

Various authors have obtained an eight term exact sequence in homologyfrom a short exact sequence of groups,the term V varying from author to author (see [7] and [2]; see also [5] for the simpler case where N is central in G, and [6] for the case where N is central and N ⊂ [G, G]). The most satisfying version of the sequence is obtained by Brown and Loday [2] (full details of [2] are in [3]) as a corollary to their van Kampen type theorem for squares of spaces: they give the term V as the kernel of a map G ∧ N → N from a “non-abelian exterior product” of G and N to the group N (the definition of G ∧ N, first published in [2], is recalled below). The two short exact sequencesandwhere F is free, together with the fact that H2(F) = 0 and H3(F) = 0, imply isomorphisms..The isomorphism (2) is essentially the description of H2(G) proved algebraically in [11]. As noted in [2], the isomorphism (3) is the analogue for H3(G) of the Hopf formula for H2(G).


Author(s):  
P. J. Hilton ◽  
D. Rees

The present paper has been inspired by a theorem of Swan(5). The theorem can be described as follows. Let G be a finite group and let Γ be its integral group ring. We shall denote by Z an infinite cyclic additive group considered as a left Γ-module by defining gm = m for all g in G and m in Z. By a Tate resolution of Z is meant an exact sequencewhere Xn is a projective module for − ∞ < n < + ∞, and.


2015 ◽  
Vol 37 (2) ◽  
pp. 337-368 ◽  
Author(s):  
TERESA BATES ◽  
TOKE MEIER CARLSEN ◽  
DAVID PASK

In this paper we give a formula for the$K$-theory of the$C^{\ast }$-algebra of a weakly left-resolving labelled space. This is done by realizing the$C^{\ast }$-algebra of a weakly left-resolving labelled space as the Cuntz–Pimsner algebra of a$C^{\ast }$-correspondence. As a corollary, we obtain a gauge-invariant uniqueness theorem for the$C^{\ast }$-algebra of any weakly left-resolving labelled space. In order to achieve this, we must modify the definition of the$C^{\ast }$-algebra of a weakly left-resolving labelled space. We also establish strong connections between the various classes of$C^{\ast }$-algebras that are associated with shift spaces and labelled graph algebras. Hence, by computing the$K$-theory of a labelled graph algebra, we are providing a common framework for computing the$K$-theory of graph algebras, ultragraph algebras, Exel–Laca algebras, Matsumoto algebras and the$C^{\ast }$-algebras of Carlsen. We provide an inductive limit approach for computing the$K$-groups of an important class of labelled graph algebras, and give examples.


1982 ◽  
Vol 92 (2) ◽  
pp. 263-274 ◽  
Author(s):  
J. E. McClure ◽  
V. P. Snaith

The construction of Dyer-Lashof operations in K-theory outlined in (6) and refined in (12) depends in an essential way on the descriptions of the mod-p K-theory of EZp, ×ZpXp and EΣ ×σ p Xp given there. Unfortunately, these descriptions are incorrect when p is odd except in the case where the Bockstein β is identically zero in K*(X; Zp), and even in this case the methods of proof used in (6) and (12) are not strong enough to show that the answer given there is correct. In this paper we repair this difficulty, obtaining a complete corrected description of K*(EZp ×ZpXp; Zp) and K*(EΣp) (theorem 3·1 below, which should be compared with ((12); theorems 3·8 and 3·9) and ((6); theorem 3)). Because of the error, the method used in (6) and (12) to construct Dyer-Lashof operations fails to go through for odd primes when non-zero Bocksteins occur, and it is not clear that this method can be repaired. We shall not deal with the construction of Dyer-Lashof operations in this paper. Instead, the first author will give a complete treatment of these operations in (5), using our present results and the theory of H∞-ring spectra to obtain strengthened versions of the results originally claimed in ((12); theorem 5·1). There is also a minor error in the mod-2 results of (12) (namely, the second formula in (12), theorem 3·8 (a) (ii)) should readwhere B2 is the second mod-2 Bockstein, and a similar change is necessary in the second formula of ((12), theorem 3·8(b) (ii)). The correction of this error requires the methods of (5) and will not be dealt with here; fortunately, the mod-2 calculations of ((12), §6–9), (10) and (11) are unaffected and remain true as stated.


1954 ◽  
Vol 2 (2) ◽  
pp. 66-76 ◽  
Author(s):  
Iain T. Adamson

Let G be a finite group, H an arbitrary subgroup (i.e., not necessarily normal); we decompose G as a union of left cosets modulo H:choosing fixed coset representatives v. In this paper we construct a “coset space complex” and assign cohomology groups; Hr([G: H], A), to it for all coefficient modules A and all dimensions, -∞<r<∞. We show that ifis an exact sequence of coefficient modules such that H1U, A')= 0 for all subgroups U of H, then a cohomology group sequencemay be defined and is exact for -∞<r<∞. We also provide a link between the cohomology groups Hr([G: H], A) and the cohomology groups of G and H; namely, we prove that if Hv(U, A)= 0 for all subgroups U of H and for v = 1, 2, …, n–1, then the sequenceis exact, where the homomorphisms of the sequence are those induced by injection, inflation and restriction respectively.


Sign in / Sign up

Export Citation Format

Share Document