Leafwise homotopy equivalences and leafwise Sobolov spaces

Author(s):  
Moulay-Tahar Benameur ◽  
James L. Heitsch

AbstractWe prove that a leafwise homotopy equivalence between compact foliated manifolds induces a well defined bounded operator between all Sobolov spaces of leafwise (for the natural foliations of the graphs of the original foliations) differential forms with coefficients in a leafwise flat bundle. We further prove that the associated map on the leafwise reduced L2 cohomology is an isomorphism which only depends on the leafwise homotopy class of the homotopy equivalence.

1997 ◽  
Vol 122 (2) ◽  
pp. 357-375 ◽  
Author(s):  
MAXIM BRAVERMAN ◽  
MICHAEL FARBER

We generalize the Novikov inequalities for 1-forms in two different directions: first, we allow non-isolated critical points (assuming that they are non-degenerate in the sense of R. Bott) and, secondly, we strengthen the inequalities by means of twisting by an arbitrary flat bundle. The proof uses Bismut's modification of the Witten deformation of the de Rham complex; it is based on an explicit estimate on the lower part of the spectrum of the corresponding Laplacian.In particular, we obtain a new analytic proof of the degenerate Morse inequalities of Bott.


Author(s):  
Friedhelm Waldhausen ◽  
Bjørn Jahren ◽  
John Rognes

Since its introduction by the author in the 1970s, the algebraic K-theory of spaces has been recognized as the main tool for studying parametrized phenomena in the theory of manifolds. However, a full proof of the equivalence relating the two areas has not appeared until now. This book presents such a proof, essentially completing the author's program from more than thirty years ago. The main result is a stable parametrized h-cobordism theorem, derived from a homotopy equivalence between a space of PL h-cobordisms on a space X and the classifying space of a category of simple maps of spaces having X as deformation retract. The smooth and topological results then follow by smoothing and triangulation theory. The proof has two main parts. The essence of the first part is a “desingularization,” improving arbitrary finite simplicial sets to polyhedra. The second part compares polyhedra with PL manifolds by a thickening procedure. Many of the techniques and results developed should be useful in other connections.


Author(s):  
Sergei Chuiko ◽  
Yaroslav Kalinichenko ◽  
Nikita Popov

The original conditions of solvability and the scheme of finding solutions of a linear Noetherian difference-algebraic boundary-value problem are proposed in the article, while the technique of pseudoinversion of matrices by Moore-Penrose is substantially used. The problem posed in the article continues to study the conditions for solvability of linear Noetherian boundary value problems given in the monographs of A.M. Samoilenko, A.V. Azbelev, V.P. Maximov, L.F. Rakhmatullina and A.A. Boichuk. The study of differential-algebraic boundary-value problems is closely related to the investigation of boundary-value problems for difference equations, initiated in the works of A.A. Markov, S.N. Bernstein, Y.S. Bezikovych, O.O. Gelfond, S.L. Sobolev, V.S. Ryabenkyi, V.B. Demidovych, A. Halanai, G.I. Marchuk, A.A. Samarskyi, Yu.A. Mytropolskyi, D.I. Martyniuk, G.M. Vainiko, A.M. Samoilenko and A.A. Boichuk. On the other hand, the study of boundary-value problems for difference equations is related to the study of differential-algebraic boundary-value problems initiated in the papers of K. Weierstrass, N.N. Lusin and F.R. Gantmacher. Systematic study of differential-algebraic boundary value problems is devoted to the works of S. Campbell, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko, N.A. Perestiyk, V.P. Yakovets, A.A. Boichuk, A. Ilchmann and T. Reis. The study of differential-algebraic boundary value problems is also associated with numerous applications of such problems in the theory of nonlinear oscillations, in mechanics, biology, radio engineering, control theory, motion stability theory. The general case of a linear bounded operator corresponding to the homogeneous part of a linear Noetherian difference-algebraic boundary value problem has no inverse is investigated. The generalized Green operator of a linear difference-algebraic boundary value problem is constructed in the article. The relevance of the study of solvability conditions, as well as finding solutions of linear Noetherian difference-algebraic boundary-value problems, is associated with the widespread use of difference-algebraic boundary-value problems obtained by linearizing nonlinear Noetherian boundary-value problems for systems of ordinary differential and difference equations. Solvability conditions are proposed, as well as the scheme of finding solutions of linear Noetherian difference-algebraic boundary value problems are illustrated in detail in the examples.


Author(s):  
Dusa McDuff ◽  
Dietmar Salamon

This chapter examines various ways to construct symplectic manifolds and submanifolds. It begins by studying blowing up and down in both the complex and the symplectic contexts. The next section is devoted to a discussion of fibre connected sums and describes Gompf’s construction of symplectic four-manifolds with arbitrary fundamental group. The chapter also contains an exposition of Gromov’s telescope construction, which shows that for open manifolds the h-principle rules and the inclusion of the space of symplectic forms into the space of nondegenerate 2-forms is a homotopy equivalence. The final section outlines Donaldson’s construction of codimension two symplectic submanifolds and explains the associated decompositions of the ambient manifold.


2013 ◽  
Vol 05 (02) ◽  
pp. 121-159 ◽  
Author(s):  
GREG FRIEDMAN ◽  
JAMES McCLURE

Witt spaces are pseudomanifolds for which the middle-perversity intersection homology with rational coefficients is self-dual. We give a new construction of the symmetric signature for Witt spaces which is similar in spirit to the construction given by Miščenko for manifolds. Our construction has all of the expected properties, including invariance under stratified homotopy equivalence.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Nikhil Kalyanapuram

Abstract We combine the technology of the theory of polytopes and twisted intersection theory to derive a large class of double copy relations that generalize the classical relations due to Kawai, Lewellen and Tye (KLT). To do this, we first study a generalization of the scattering equations of Cachazo, He and Yuan. While the scattering equations were defined on ℳ0, n — the moduli space of marked Riemann spheres — the new scattering equations are defined on polytopes known as accordiohedra, realized as hyperplane arrangements. These polytopes encode as patterns of intersection the scattering amplitudes of generic scalar theories. The twisted period relations of such intersection numbers provide a vast generalization of the KLT relations. Differential forms dual to the bounded chambers of the hyperplane arrangements furnish a natural generalization of the Bern-Carrasco-Johansson (BCJ) basis, the number of which can be determined by counting the number of solutions of the generalized scattering equations. In this work the focus is on a generalization of the BCJ expansion to generic scalar theories, although we use the labels KLT and BCJ interchangeably.


2020 ◽  
pp. 1-23
Author(s):  
TUYEN TRUNG TRUONG

Abstract A strong submeasure on a compact metric space X is a sub-linear and bounded operator on the space of continuous functions on X. A strong submeasure is positive if it is non-decreasing. By the Hahn–Banach theorem, a positive strong submeasure is the supremum of a non-empty collection of measures whose masses are uniformly bounded from above. There are many natural examples of continuous maps of the form $f:U\rightarrow X$ , where X is a compact metric space and $U\subset X$ is an open-dense subset, where f cannot extend to a reasonable function on X. We can mention cases such as transcendental maps of $\mathbb {C}$ , meromorphic maps on compact complex varieties, or continuous self-maps $f:U\rightarrow U$ of a dense open subset $U\subset X$ where X is a compact metric space. For the aforementioned mentioned the use of measures is not sufficient to establish the basic properties of ergodic theory, such as the existence of invariant measures or a reasonable definition of measure-theoretic entropy and topological entropy. In this paper we show that strong submeasures can be used to completely resolve the issue and establish these basic properties. In another paper we apply strong submeasures to the intersection of positive closed $(1,1)$ currents on compact Kähler manifolds.


Sign in / Sign up

Export Citation Format

Share Document