Cavitation bubble dynamics in a liquid gap of variable height

2011 ◽  
Vol 682 ◽  
pp. 241-260 ◽  
Author(s):  
SILVESTRE ROBERTO GONZALEZ-AVILA ◽  
EVERT KLASEBOER ◽  
BOO CHEONG KHOO ◽  
CLAUS-DIETER OHL

We report on an experimental study of cavitation bubble dynamics within sub-millimetre-sized narrow gaps. The gap height is varied, while the position of the cavitation event is fixed with respect to the lower gap wall. Four different sizes of laser-induced cavitation bubbles are studied using high-speed photography of up to 430,000 frames per second. We find a strong influence of the gap height, H, on the bubble dynamics, in particular on the collapse scenario. Also, similar bubble dynamics was found for the same non-dimensional gap height η = H/Rx, where Rx is the maximum radius in the horizontal direction. Three scenarios are observed: neutral collapse at the gap centre, collapse onto the lower wall and collapse onto the upper wall. For intermediate gap height the bubble obtains a conical shape 1.4 < η < 7.0. For large distances, η > 7.0, the bubble no longer feels the presence of the upper wall and collapses hemispherically. The collapse time increases with respect to the expansion time for decreasing values of η. Due to the small scales involved, the final stage of the bubble collapse could not be resolved temporally and numerical simulations were performed to elucidate the details of the flow. The simulations demonstrate high-speed jetting towards the upper and lower walls and complex bubble splitting for neutral collapses.

2015 ◽  
Vol 767 ◽  
pp. 31-51 ◽  
Author(s):  
Silvestre Roberto Gonzalez Avila ◽  
Chaolong Song ◽  
Claus-Dieter Ohl

AbstractWe report on a novel method to generate fast transient microjets and study their characteristics. The simple device consists of two electrodes on a substrate with a hole in between. The side of the substrate with the electrodes is submerged in a liquid. Two separate microjets exit through the tapered hole after an electrical discharge is induced between the electrodes. They are formed during the expansion and collapse of a single cavitation bubble. The cavitation bubble dynamics as well as the jets were studied with high-speed photography at up to 500 000 f.p.s. With increasing jet velocity they become unstable and spray formation is observed. The jet created during expansion (first jet) is in most cases slower than the jet created during bubble collapse, which can reach up to $400~\text{m}~\text{s}^{-1}$. The spray exiting the orifice is at least in part due to the presence of cavitation in the microchannel as observed by high-speed recording. The effect of viscosity was tested using silicone oil of 10, 50 and 100 cSt. Interestingly, for all liquids the transition from a stable to an unstable jet occurs at $We\sim 4600$. We demonstrate that these microjets can penetrate into soft material; thus they can be potentially used as a needleless drug delivery device.


1972 ◽  
Vol 94 (4) ◽  
pp. 825-832 ◽  
Author(s):  
C. L. Kling ◽  
F. G. Hammitt

The collapse of spark-induced cavitation bubbles in a flowing system was studied by means of high speed photography. The migration of cavitation bubbles toward a nearby solid boundary during collapse and rebound was observed. Near its minimum volume the bubble typically formed a high speed microjet, which struck the nearby surface causing individual damage craters on soft aluminum.


2016 ◽  
Author(s):  
N. Tinne ◽  
B. Matthias ◽  
F. Kranert ◽  
C. Wetzel ◽  
A. Krüger ◽  
...  

2015 ◽  
Vol 5 (5) ◽  
pp. 20150017 ◽  
Author(s):  
John R. Blake ◽  
David M. Leppinen ◽  
Qianxi Wang

Cavitation and bubble dynamics have a wide range of practical applications in a range of disciplines, including hydraulic, mechanical and naval engineering, oil exploration, clinical medicine and sonochemistry. However, this paper focuses on how a fundamental concept, the Kelvin impulse, can provide practical insights into engineering and industrial design problems. The pathway is provided through physical insight, idealized experiments and enhancing the accuracy and interpretation of the computation. In 1966, Benjamin and Ellis made a number of important statements relating to the use of the Kelvin impulse in cavitation and bubble dynamics, one of these being ‘One should always reason in terms of the Kelvin impulse, not in terms of the fluid momentum…’. We revisit part of this paper, developing the Kelvin impulse from first principles, using it, not only as a check on advanced computations (for which it was first used!), but also to provide greater physical insights into cavitation bubble dynamics near boundaries (rigid, potential free surface, two-fluid interface, flexible surface and axisymmetric stagnation point flow) and to provide predictions on different types of bubble collapse behaviour, later compared against experiments. The paper concludes with two recent studies involving (i) the direction of the jet formation in a cavitation bubble close to a rigid boundary in the presence of high-intensity ultrasound propagated parallel to the surface and (ii) the study of a ‘paradigm bubble model’ for the collapse of a translating spherical bubble, sometimes leading to a constant velocity high-speed jet, known as the Longuet-Higgins jet.


2001 ◽  
Vol 433 ◽  
pp. 251-281 ◽  
Author(s):  
EMIL-ALEXANDRU BRUJAN ◽  
KESTER NAHEN ◽  
PETER SCHMIDT ◽  
ALFRED VOGEL

The interaction of a laser-induced cavitation bubble with an elastic boundary and its dependence on the distance between bubble and boundary are investigated experimentally. The elastic boundary consists of a transparent polyacrylamide (PAA) gel with 80% water concentration with elastic modulus E = 0.25 MPa. At this E-value, the deformation and rebound of the boundary is very pronounced providing particularly interesting features of bubble dynamics. It is shown by means of high-speed photography with up to 5 million frames s−1 that bubble splitting, formation of liquid jets away from and towards the boundary, and jet-like ejection of the boundary material into the liquid are the main features of this interaction. The maximum liquid jet velocity measured was 960 m s−1. Such high-velocity jets penetrate the elastic boundary even through a water layer of 0.35 mm thickness. The jetting behaviour arises from the interaction between the counteracting forces induced by the rebound of the elastic boundary and the Bjerknes attraction force towards the boundary. General principles of the formation of annular and axial jets are discussed which allow the interpretation of the complex dynamics. The concept of the Kelvin impulse is examined with regard to bubble migration and jet formation. The results are discussed with respect to cavitation erosion, collateral damage in laser surgery, and cavitation-mediated enhancement of pulsed laser ablation of tissue.


Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1051
Author(s):  
Li ◽  
Duan ◽  
Zhang ◽  
Tang ◽  
Zhang

In the present paper, the dynamic behavior of cavitation bubbles near a wall is experimentally investigated with a focus on the retardant effects of the wall on the collapsing dynamics of the bubble. In the present experiments, a cavitation bubble is generated by a focused laser beam with its behavior recorded through high-speed photography. During the data analysis, the influences of non-dimensional bubble–wall distance on the bubble collapsing dynamics are qualitatively and quantitatively investigated in terms of the interface evolution, the velocities of the poles, and the movement of the bubble centroid. Our results reveal that the presence of the wall could significantly affect the collapsing characteristics, leading to a dramatic difference between the moving velocities of interfaces near and away from the wall. With the decrease of the bubble–wall distance, the effects will be gradually strengthened with a rapid movement of the bubble centroid during the final collapse. Finally, a physical interpretation of the phenomenon is given based on the bubble theory, together with a rough estimation of the induced water hammer pressure by the bubble collapse.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xin Wang ◽  
Ting-Qiang Xie

Purpose Cavitation erosion has always been a common technical problem in a hydraulic discharging structure. This paper aims to investigate the cavitation erosion behavior of hydraulic concrete under high-speed flow. Design/methodology/approach A high-speed and high-pressure venturi cavitation erosion generator was used to simulate the strong cavitation. The characteristics of hydrodynamic loads of cavitation bubble collapse zone, the failure characteristics and the erosion development process of concrete were investigated. The main influencing factors of cavitation erosion were discussed. Findings The collapse of the cavitation bubble group produced a high frequency, continuous and unsteady pulse load on the wall of concrete, which was more likely to cause fatigue failure of concrete materials. The cavitation action position and the main frequency of impact load were greatly affected by the downstream pressure. A power exponential relationship between cavitation load, cavitation erosion and flow speed was observed. With the increase of concrete strength, the degree of damage of cavitation erosion was approximately linearly reduced. Originality/value After cavitation erosion, a skeleton structure was formed by the accumulation of granular particles, and the relatively independent bulk structure of the surface differed from the flake structure formed after abrasion.


Sign in / Sign up

Export Citation Format

Share Document