hydraulic concrete
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 40)

H-INDEX

12
(FIVE YEARS 1)

2022 ◽  
Vol 14 (2) ◽  
pp. 695
Author(s):  
Lei Wang ◽  
Shengwen Tang ◽  
Terasa E. Chen ◽  
Wengui Li ◽  
Chamila Gunasekara

Concrete has always been indispensable as a material for the engineering and construction of hydraulic structures (e [...]


2022 ◽  
Vol 316 ◽  
pp. 126055
Author(s):  
Xiangyi Zhu ◽  
Yin Bai ◽  
Xudong Chen ◽  
Zhenghong Tian ◽  
Yingjie Ning

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xin Wang ◽  
Ting-Qiang Xie

Purpose Cavitation erosion has always been a common technical problem in a hydraulic discharging structure. This paper aims to investigate the cavitation erosion behavior of hydraulic concrete under high-speed flow. Design/methodology/approach A high-speed and high-pressure venturi cavitation erosion generator was used to simulate the strong cavitation. The characteristics of hydrodynamic loads of cavitation bubble collapse zone, the failure characteristics and the erosion development process of concrete were investigated. The main influencing factors of cavitation erosion were discussed. Findings The collapse of the cavitation bubble group produced a high frequency, continuous and unsteady pulse load on the wall of concrete, which was more likely to cause fatigue failure of concrete materials. The cavitation action position and the main frequency of impact load were greatly affected by the downstream pressure. A power exponential relationship between cavitation load, cavitation erosion and flow speed was observed. With the increase of concrete strength, the degree of damage of cavitation erosion was approximately linearly reduced. Originality/value After cavitation erosion, a skeleton structure was formed by the accumulation of granular particles, and the relatively independent bulk structure of the surface differed from the flake structure formed after abrasion.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xia Chen ◽  
Xian Zhou ◽  
Ziling Peng ◽  
Jiazheng Li

This work has launched a comprehensive investigation on the macro performance and micro structure of mass concrete produced with alkali-active sand slate powder (ASSP) for use as the mineral admixture and a thorough analysis on its technical and economic effects is also conducted. Results indicated ternary blend with hybrid of 5–8 wt.% silica fume (SF) and 15–20 wt.% ASSP has the optimal compressive and flexural strength. ASSP particle participates in hydration, accelerates hydration of cement clinker within 8.5 hours, and reduces the autogenous strain of pastes by 164 × 10−6 in case of dosage less than 25% by mass. Improvement in the mechanical and deformation properties of concrete produced with the hybrid of SF and ASSP is attributed to better particles gradation, compactness enhancement, and transformation in products of hydration. On the whole, it provides another new approach for use of alkali-active rock after second processing as mineral admixture in hydraulic concrete in terms of good performance and economic effects.


2021 ◽  
Vol 10 (4) ◽  
pp. 245-252
Author(s):  
Ernesto Mora ◽  
Erick Castellón

To assess several quality parameters of hydraulic concrete, cubic samples of this material are commonly assembled in engineering laboratories using molds. It is ubiquitous the use of cubic metallic molds of volume 125 cm3; these molds require the application of demolding substances (such as oils) on their surfaces to avoid the adhesion of the final hardened concrete sample to the molds. Despite this common practice suitable for evaluating mechanical traits of the materials, the use of a demolding agent spoils the concrete samples for the assessment of surface and water absorption parameters. To overcome this difficulty, we propose a new anti-adherent cubic mold that requires no demolding agent. The construction of the new mold based on anti-adherent polytetrafluoroethene (PTFE, Teflon®) is described with its use. To assess the claimed advantages of the new anti-adherent molds in testing surface and water diffusion traits of concrete samples, experiments on water contact angles, rates of water absorption and drying were performed on concrete specimens obtained with the classic and the new PTFE molds. It was proved the advantage of the anti-adherent mold over common metallic molds. The use of an oil as demolding agent in the concrete samples assembled in metallic molds produced conspicuous differences of water contact angles and absorption in comparison to clean concrete samples produced with PTFE molds.


Sign in / Sign up

Export Citation Format

Share Document