Spontaneous layering in stratified turbulent Taylor–Couette flow

2013 ◽  
Vol 721 ◽  
Author(s):  
R. L. F. Oglethorpe ◽  
C. P. Caulfield ◽  
Andrew W. Woods

AbstractWe conduct a series of laboratory experiments to study the mixing of an initially linear stratification in turbulent Taylor–Couette flow. We vary the inner radius, ${R}_{1} $, and rotation rate, $\Omega $, relative to the fixed outer cylinder, of radius ${R}_{2} $, as well as the initial buoyancy frequency ${N}_{0} = \sqrt{(- g/ \rho )\partial \rho / \partial z} $. We find that a linear stratification spontaneously splits into a series of layers and interfaces. The characteristic height of these layers is proportional to ${U}_{H} / {N}_{0} $, where ${U}_{H} = \sqrt{{R}_{1} { \mathrm{\Delta} }_{R} } \Omega $ is a horizontal velocity scale, with ${ \mathrm{\Delta} }_{R} = {R}_{2} - {R}_{1} $ the gap width of the annulus. The buoyancy flux through these layers matches the equivalent flux through a two-layer stratification, independently of the height or number of layers. For a strongly stratified flow, the flux tends to an asymptotic constant value, even when multiple layers are present, consistent with Woods et al. (J. Fluid Mech., vol. 663, 2010, pp. 347–357). For smaller stratification the flux increases, reaching a maximum just before the layers disappear due to overturning of the interfaces.

2015 ◽  
Vol 774 ◽  
pp. 342-362 ◽  
Author(s):  
Freja Nordsiek ◽  
Sander G. Huisman ◽  
Roeland C. A. van der Veen ◽  
Chao Sun ◽  
Detlef Lohse ◽  
...  

We present azimuthal velocity profiles measured in a Taylor–Couette apparatus, which has been used as a model of stellar and planetary accretion disks. The apparatus has a cylinder radius ratio of ${\it\eta}=0.716$, an aspect ratio of ${\it\Gamma}=11.74$, and the plates closing the cylinders in the axial direction are attached to the outer cylinder. We investigate angular momentum transport and Ekman pumping in the Rayleigh-stable regime. This regime is linearly stable and is characterized by radially increasing specific angular momentum. We present several Rayleigh-stable profiles for shear Reynolds numbers $\mathit{Re}_{S}\sim O(10^{5})$, for both ${\it\Omega}_{i}>{\it\Omega}_{o}>0$ (quasi-Keplerian regime) and ${\it\Omega}_{o}>{\it\Omega}_{i}>0$ (sub-rotating regime), where ${\it\Omega}_{i,o}$ is the inner/outer cylinder rotation rate. None of the velocity profiles match the non-vortical laminar Taylor–Couette profile. The deviation from that profile increases as solid-body rotation is approached at fixed $\mathit{Re}_{S}$. Flow super-rotation, an angular velocity greater than those of both cylinders, is observed in the sub-rotating regime. The velocity profiles give lower bounds for the torques required to rotate the inner cylinder that are larger than the torques for the case of laminar Taylor–Couette flow. The quasi-Keplerian profiles are composed of a well-mixed inner region, having approximately constant angular momentum, connected to an outer region in solid-body rotation with the outer cylinder and attached axial boundaries. These regions suggest that the angular momentum is transported axially to the axial boundaries. Therefore, Taylor–Couette flow with closing plates attached to the outer cylinder is an imperfect model for accretion disk flows, especially with regard to their stability.


2017 ◽  
Vol 831 ◽  
pp. 330-357 ◽  
Author(s):  
A. Froitzheim ◽  
S. Merbold ◽  
C. Egbers

Fully turbulent Taylor–Couette flow between independently rotating cylinders is investigated experimentally in a wide-gap configuration ($\unicode[STIX]{x1D702}=0.5$) around the maximum transport of angular momentum. In that regime turbulent Taylor vortices are present inside the gap, leading to a pronounced axial dependence of the flow. To account for this dependence, we measure the radial and azimuthal velocity components in horizontal planes at different cylinder heights using particle image velocimetry. The ratio of angular velocities of the cylinder walls $\unicode[STIX]{x1D707}$, where the torque maximum appears, is located in the low counter-rotating regime ($\unicode[STIX]{x1D707}_{max}(\unicode[STIX]{x1D702}=0.5)=-0.2$). This point coincides with the smallest radial gradient of angular velocity in the bulk and the detachment of the neutral surface from the outer cylinder wall, where the azimuthal velocity component vanishes. The structure of the flow is further revealed by decomposing the flow field into its large-scale and turbulent contributions. Applying this decomposition to the kinetic energy, we can analyse the formation process of the turbulent Taylor vortices in more detail. Starting at pure inner cylinder rotation, the vortices are formed and strengthened until $\unicode[STIX]{x1D707}=-0.2$ quite continuously, while they break down rapidly for higher counter-rotation. The same picture is shown by the decomposed Nusselt number, and the range of rotation ratios, where turbulent Taylor vortices can exist, shrinks strongly in comparison to investigations at much lower shear Reynolds numbers. Moreover, we analyse the scaling of the Nusselt number and the wind Reynolds number with the shear Reynolds number, finding a communal transition at approximately $Re_{S}\approx 10^{5}$ from classical to ultimate turbulence with a transitional regime lasting at least up to $Re_{S}\geqslant 2\times 10^{5}$. Including the axial dispersion of the flow into the calculation of the wind amplitude, we can also investigate the wind Reynolds number as a function of the rotation ratio $\unicode[STIX]{x1D707}$, finding a maximum in the low counter-rotating regime slightly larger than $\unicode[STIX]{x1D707}_{max}$. Based on our study it becomes clear that the investigation of counter-rotating Taylor–Couette flows strongly requires an axial exploration of the flow.


2013 ◽  
Vol 719 ◽  
pp. 14-46 ◽  
Author(s):  
Rodolfo Ostilla ◽  
Richard J. A. M. Stevens ◽  
Siegfried Grossmann ◽  
Roberto Verzicco ◽  
Detlef Lohse

AbstractWe numerically simulate turbulent Taylor–Couette flow for independently rotating inner and outer cylinders, focusing on the analogy with turbulent Rayleigh–Bénard flow. Reynolds numbers of $R{e}_{i} = 8\times 1{0}^{3} $ and $R{e}_{o} = \pm 4\times 1{0}^{3} $ of the inner and outer cylinders, respectively, are reached, corresponding to Taylor numbers $Ta$ up to $1{0}^{8} $. Effective scaling laws for the torque and other system responses are found. Recent experiments with the Twente Turbulent Taylor–Couette (${T}^{3} C$) setup and with a similar facility in Maryland at very high Reynolds numbers have revealed an optimum transport at a certain non-zero rotation rate ratio $a= - {\omega }_{o} / {\omega }_{i} $ of about ${a}_{\mathit{opt}} = 0. 33$. For large enough $Ta$ in the numerically accessible range we also find such an optimum transport at non-zero counter-rotation. The position of this maximum is found to shift with the driving, reaching a maximum of ${a}_{\mathit{opt}} = 0. 15$ for $Ta= 2. 5\times 1{0}^{7} $. An explanation for this shift is elucidated, consistent with the experimental result that ${a}_{\mathit{opt}} $ becomes approximately independent of the driving strength for large enough Reynolds numbers. We furthermore numerically calculate the angular velocity profiles and visualize the different flow structures for the various regimes. By writing the equations in a frame co-rotating with the outer cylinder a link is found between the local angular velocity profiles and the global transport quantities.


2004 ◽  
Vol 67 (11) ◽  
pp. 2410-2415 ◽  
Author(s):  
L. J. FORNEY ◽  
J. A. PIERSON ◽  
Z. YE

A novel reactor is described with flow characteristics that approach that of ideal plug flow but with a residence time that is uncoupled from the hydrodynamics or boundary layer characteristics. The design described consists of an inner cylinder that rotates within a stationary but larger outer cylinder. At low rotation rates, a laminar, hydrodynamic configuration called Taylor-Couette flow is established, which consists of a system of circumferential vortices within the annular fluid gap. The latter constitutes a spatially periodic flow that is the hydrodynamic equivalent to cross flow over a tube bank or lamp array. These vortices provide radial mixing, reduce the boundary layer thickness, and are independent of the axial flow rate and thus the fluid residence time. An additional feature of the rotating design is the repetitive exposure of the fluid parcels to a minimum number of lamps, which substantially reduces the maintenance requirements. Inactivation data for Escherichia coli (ATCC 15597) were recorded in commercial apple and grape juice that are relatively opaque to UV radiation. With initial E. coli concentrations of approximately 106 CFU/ml, Taylor-Couette flow was found to provide a 3- to 5-log improvement in the inactivation efficiency compared with simple channel flow between concentric cylinders.


1997 ◽  
Vol 348 ◽  
pp. 141-151 ◽  
Author(s):  
AREL Y. WEISBERG ◽  
IOANNIS G. KEVREKIDIS ◽  
ALEXANDER J. SMITS

Periodic axial motion of the inner cylinder in Taylor–Couette flow is used to delay transition to Taylor vortices. The outer cylinder is fixed. The marginal stability diagram of Taylor–Couette flow with simultaneous periodic axial motion of the inner cylinder is determined using flow visualization. For the range of parameters studied, the degree of enhanced stability is found to be greater than that predicted by Hu & Kelly (1995), and differences in the scaling with axial Reynolds number are found. The discrepancies are attributed to essential differences between the base flow in the open system considered by Hu & Kelly, where mass is conserved over one period of oscillation, and the base flow in the enclosed experimental apparatus, where mass is conserved at all sections at all times.


2007 ◽  
Vol 581 ◽  
pp. 221-250 ◽  
Author(s):  
BRUNO ECKHARDT ◽  
SIEGFRIED GROSSMANN ◽  
DETLEF LOHSE

Turbulent Taylor–Couette flow with arbitrary rotation frequencies ω1, ω2 of the two coaxial cylinders with radii r1 < r2 is analysed theoretically. The current Jω of the angular velocity ω(x,t) = uϕ(r,ϕ,z,t)/r across the cylinder gap and and the excess energy dissipation rate ϵw due to the turbulent, convective fluctuations (the ‘wind’) are derived and their dependence on the control parameters analysed. The very close correspondence of Taylor–Couette flow with thermal Rayleigh–Bénard convection is elaborated, using these basic quantities and the exact relations among them to calculate the torque as a function of the rotation frequencies and the radius ratio η = r1/r2 or the gap width d = r2 − r1 between the cylinders. A quantity σ corresponding to the Prandtl number in Rayleigh–Bénard flow can be introduced, $\sigma = ((1 + \eta)/2)/\sqrt{\etaacute;)^4$. In Taylor–Couette flow it characterizes the geometry, instead of material properties of the liquid as in Rayleigh–Bénard flow. The analogue of the Rayleigh number is the Taylor number, defined as Ta ∝ (ω1 − ω2)2 times a specific geometrical factor. The experimental data show no pure power law, but the exponent α of the torque versus the rotation frequency ω1 depends on the driving frequency ω1. An explanation for the physical origin of the ω1-dependence of the measured local power-law exponents α(ω1) is put forward. Also, the dependence of the torque on the gap width η is discussed and, in particular its strong increase for η → 1.


Author(s):  
Adhi Kusumastuti ◽  
Nur Qudus ◽  
Widi Astuti

A study was done to investigate effect of volume ratio of water and used cooking oil to the characteristic of Taylor-Couette flow in terms of shear stress and energy loss distribution within Taylor-Couette column. The characterisation study was carried out by applying water and waste cooking oil at volume ratio of 1:1, 1:3, 1:5, and 1:6. The inner cylinder was rotated at 300 rpm while the outer cylinder was kept static. It was found that optimal volume ratio for wastewater treatment was 1:1, shown by the phenomenon of Modulated Wavy Vortices flow regime. The highest Taylor number of 1.01x107 was also achieved in the volume ratio, while the shear stress was -1.99.


Sign in / Sign up

Export Citation Format

Share Document