Delaying transition in Taylor–Couette flow with axial motion of the inner cylinder

1997 ◽  
Vol 348 ◽  
pp. 141-151 ◽  
Author(s):  
AREL Y. WEISBERG ◽  
IOANNIS G. KEVREKIDIS ◽  
ALEXANDER J. SMITS

Periodic axial motion of the inner cylinder in Taylor–Couette flow is used to delay transition to Taylor vortices. The outer cylinder is fixed. The marginal stability diagram of Taylor–Couette flow with simultaneous periodic axial motion of the inner cylinder is determined using flow visualization. For the range of parameters studied, the degree of enhanced stability is found to be greater than that predicted by Hu & Kelly (1995), and differences in the scaling with axial Reynolds number are found. The discrepancies are attributed to essential differences between the base flow in the open system considered by Hu & Kelly, where mass is conserved over one period of oscillation, and the base flow in the enclosed experimental apparatus, where mass is conserved at all sections at all times.

2017 ◽  
Vol 831 ◽  
pp. 330-357 ◽  
Author(s):  
A. Froitzheim ◽  
S. Merbold ◽  
C. Egbers

Fully turbulent Taylor–Couette flow between independently rotating cylinders is investigated experimentally in a wide-gap configuration ($\unicode[STIX]{x1D702}=0.5$) around the maximum transport of angular momentum. In that regime turbulent Taylor vortices are present inside the gap, leading to a pronounced axial dependence of the flow. To account for this dependence, we measure the radial and azimuthal velocity components in horizontal planes at different cylinder heights using particle image velocimetry. The ratio of angular velocities of the cylinder walls $\unicode[STIX]{x1D707}$, where the torque maximum appears, is located in the low counter-rotating regime ($\unicode[STIX]{x1D707}_{max}(\unicode[STIX]{x1D702}=0.5)=-0.2$). This point coincides with the smallest radial gradient of angular velocity in the bulk and the detachment of the neutral surface from the outer cylinder wall, where the azimuthal velocity component vanishes. The structure of the flow is further revealed by decomposing the flow field into its large-scale and turbulent contributions. Applying this decomposition to the kinetic energy, we can analyse the formation process of the turbulent Taylor vortices in more detail. Starting at pure inner cylinder rotation, the vortices are formed and strengthened until $\unicode[STIX]{x1D707}=-0.2$ quite continuously, while they break down rapidly for higher counter-rotation. The same picture is shown by the decomposed Nusselt number, and the range of rotation ratios, where turbulent Taylor vortices can exist, shrinks strongly in comparison to investigations at much lower shear Reynolds numbers. Moreover, we analyse the scaling of the Nusselt number and the wind Reynolds number with the shear Reynolds number, finding a communal transition at approximately $Re_{S}\approx 10^{5}$ from classical to ultimate turbulence with a transitional regime lasting at least up to $Re_{S}\geqslant 2\times 10^{5}$. Including the axial dispersion of the flow into the calculation of the wind amplitude, we can also investigate the wind Reynolds number as a function of the rotation ratio $\unicode[STIX]{x1D707}$, finding a maximum in the low counter-rotating regime slightly larger than $\unicode[STIX]{x1D707}_{max}$. Based on our study it becomes clear that the investigation of counter-rotating Taylor–Couette flows strongly requires an axial exploration of the flow.


2015 ◽  
Vol 774 ◽  
pp. 342-362 ◽  
Author(s):  
Freja Nordsiek ◽  
Sander G. Huisman ◽  
Roeland C. A. van der Veen ◽  
Chao Sun ◽  
Detlef Lohse ◽  
...  

We present azimuthal velocity profiles measured in a Taylor–Couette apparatus, which has been used as a model of stellar and planetary accretion disks. The apparatus has a cylinder radius ratio of ${\it\eta}=0.716$, an aspect ratio of ${\it\Gamma}=11.74$, and the plates closing the cylinders in the axial direction are attached to the outer cylinder. We investigate angular momentum transport and Ekman pumping in the Rayleigh-stable regime. This regime is linearly stable and is characterized by radially increasing specific angular momentum. We present several Rayleigh-stable profiles for shear Reynolds numbers $\mathit{Re}_{S}\sim O(10^{5})$, for both ${\it\Omega}_{i}>{\it\Omega}_{o}>0$ (quasi-Keplerian regime) and ${\it\Omega}_{o}>{\it\Omega}_{i}>0$ (sub-rotating regime), where ${\it\Omega}_{i,o}$ is the inner/outer cylinder rotation rate. None of the velocity profiles match the non-vortical laminar Taylor–Couette profile. The deviation from that profile increases as solid-body rotation is approached at fixed $\mathit{Re}_{S}$. Flow super-rotation, an angular velocity greater than those of both cylinders, is observed in the sub-rotating regime. The velocity profiles give lower bounds for the torques required to rotate the inner cylinder that are larger than the torques for the case of laminar Taylor–Couette flow. The quasi-Keplerian profiles are composed of a well-mixed inner region, having approximately constant angular momentum, connected to an outer region in solid-body rotation with the outer cylinder and attached axial boundaries. These regions suggest that the angular momentum is transported axially to the axial boundaries. Therefore, Taylor–Couette flow with closing plates attached to the outer cylinder is an imperfect model for accretion disk flows, especially with regard to their stability.


Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 587 ◽  
Author(s):  
Vishakha Kaushik ◽  
Shunhe Wu ◽  
Hoyoung Jang ◽  
Je Kang ◽  
Kyunghoon Kim ◽  
...  

The production of a large amount of high-quality transition metal dichalcogenides is critical for their use in industrial applications. Here, we demonstrate the scalable exfoliation of bulk molybdenum disulfide (MoS2) powders into single- or few-layer nanosheets using the Taylor-Couette flow. The toroidal Taylor vortices generated in the Taylor-Couette flow provide efficient mixing and high shear stresses on the surfaces of materials, resulting in a more efficient exfoliation of the layered materials. The bulk MoS2 powders dispersed in N-methyl-2-pyrrolidone (NMP) were exfoliated with the Taylor-Couette flow by varying the process parameters, including the initial concentration of MoS2 in the NMP, rotation speed of the reactor, reaction time, and temperature. With a batch process at an optimal condition, half of the exfoliated MoS2 nanosheets were thinner than ~3 nm, corresponding to single to ~4 layers. The spectroscopic and microscopic analysis revealed that the exfoliated MoS2 nanosheets contained the same quality as the bulk powders without any contamination or modification. Furthermore, the continuous exfoliation of MoS2 was demonstrated by the Taylor-Couette flow reactor, which produced an exfoliated MoS2 solution with a concentration of ~0.102 mg/mL. This technique is a promising way for the scalable production of single- or few-layer MoS2 nanosheets without using hazardous intercalation materials.


Author(s):  
W. He ◽  
M. Tanahashi ◽  
T. Miyauchi

Direct numerical simulation (DNS) has been conducted to investigate turbulence transition process and fine scale structures in Taylor-Couette flow. Fourier-Chebyshev spectral methods have been used for spatial discretization and DNS are conducted up to Re = 12000. With the increase of Reynolds number, fine scale eddies are formed in a stepwise fashion. In relatively weak turbulent Taylor-Couette flow, fine scale eddies elongated in the azimuthal direction appear near the outflow and inflow boundaries between Taylor vortices. These fine scale eddies in the outflow and inflow boundaries are inclined at about −45/135 degree with respect to the azimuthal direction. With the increase of Reynolds number, the number of fine scale eddies increases and fine scale eddies appear in whole flow fields. The Taylor vortices in high Reynolds number organize lots of fine scale eddies. In high Reynolds number Taylor-Couette flow, fine scale eddies parallel to the axial direction are formed in sweep regions between large scale Taylor vortices. The most expected diameter and maximum azimuthal velocity of coherent fine scale eddies are 8 times of Kolmogorov scale and 1.7 times of Kolmogorov velocity respectively for high Reynolds Taylor-Couette flow. This scaling law coincides with that in other turbulent flow fields.


2013 ◽  
Vol 719 ◽  
pp. 14-46 ◽  
Author(s):  
Rodolfo Ostilla ◽  
Richard J. A. M. Stevens ◽  
Siegfried Grossmann ◽  
Roberto Verzicco ◽  
Detlef Lohse

AbstractWe numerically simulate turbulent Taylor–Couette flow for independently rotating inner and outer cylinders, focusing on the analogy with turbulent Rayleigh–Bénard flow. Reynolds numbers of $R{e}_{i} = 8\times 1{0}^{3} $ and $R{e}_{o} = \pm 4\times 1{0}^{3} $ of the inner and outer cylinders, respectively, are reached, corresponding to Taylor numbers $Ta$ up to $1{0}^{8} $. Effective scaling laws for the torque and other system responses are found. Recent experiments with the Twente Turbulent Taylor–Couette (${T}^{3} C$) setup and with a similar facility in Maryland at very high Reynolds numbers have revealed an optimum transport at a certain non-zero rotation rate ratio $a= - {\omega }_{o} / {\omega }_{i} $ of about ${a}_{\mathit{opt}} = 0. 33$. For large enough $Ta$ in the numerically accessible range we also find such an optimum transport at non-zero counter-rotation. The position of this maximum is found to shift with the driving, reaching a maximum of ${a}_{\mathit{opt}} = 0. 15$ for $Ta= 2. 5\times 1{0}^{7} $. An explanation for this shift is elucidated, consistent with the experimental result that ${a}_{\mathit{opt}} $ becomes approximately independent of the driving strength for large enough Reynolds numbers. We furthermore numerically calculate the angular velocity profiles and visualize the different flow structures for the various regimes. By writing the equations in a frame co-rotating with the outer cylinder a link is found between the local angular velocity profiles and the global transport quantities.


2004 ◽  
Vol 67 (11) ◽  
pp. 2410-2415 ◽  
Author(s):  
L. J. FORNEY ◽  
J. A. PIERSON ◽  
Z. YE

A novel reactor is described with flow characteristics that approach that of ideal plug flow but with a residence time that is uncoupled from the hydrodynamics or boundary layer characteristics. The design described consists of an inner cylinder that rotates within a stationary but larger outer cylinder. At low rotation rates, a laminar, hydrodynamic configuration called Taylor-Couette flow is established, which consists of a system of circumferential vortices within the annular fluid gap. The latter constitutes a spatially periodic flow that is the hydrodynamic equivalent to cross flow over a tube bank or lamp array. These vortices provide radial mixing, reduce the boundary layer thickness, and are independent of the axial flow rate and thus the fluid residence time. An additional feature of the rotating design is the repetitive exposure of the fluid parcels to a minimum number of lamps, which substantially reduces the maintenance requirements. Inactivation data for Escherichia coli (ATCC 15597) were recorded in commercial apple and grape juice that are relatively opaque to UV radiation. With initial E. coli concentrations of approximately 106 CFU/ml, Taylor-Couette flow was found to provide a 3- to 5-log improvement in the inactivation efficiency compared with simple channel flow between concentric cylinders.


We study the growth and decay of Taylor vortices on a timescale that is sufficiently slow to allow analysis by perturbation methods, but which is sufficiently fast to exclude the quasi-steady theory as an approximation. The time-dependent behaviour of the base flow and the Taylor vortices is studied by means of matched series for the amplitude, both for increasing and decreasing Reynolds numbers, and detailed results are presented for the case when the radius ratio equals 0.951.


2019 ◽  
Vol 870 ◽  
pp. 901-940 ◽  
Author(s):  
Prashanth Ramesh ◽  
S. Bharadwaj ◽  
Meheboob Alam

Flow visualization and particle image velocimetry (PIV) measurements are used to unravel the pattern transition and velocity field in the Taylor–Couette flow (TCF) of neutrally buoyant non-Brownian spheres immersed in a Newtonian fluid. With increasing Reynolds number ($Re$) or the rotation rate of the inner cylinder, the bifurcation sequence in suspension TCF remains same as in its Newtonian counterpart (i.e. from the circular Couette flow (CCF) to stationary Taylor vortex flow (TVF) and then to travelling wavy Taylor vortices (WTV) with increasing $Re$) for small particle volume fractions ($\unicode[STIX]{x1D719}<0.05$). However, at $\unicode[STIX]{x1D719}\geqslant 0.05$, non-axisymmetric patterns such as (i) the spiral vortex flow (SVF) and (ii) two mixed or co-existing states of stationary (TVF, axisymmetric) and travelling (WTV or SVF, non-axisymmetric) waves, namely (iia) the ‘TVF$+$WTV’ and (iib) the ‘TVF$+$SVF’ states, are found, with the former as a primary bifurcation from CCF. While the SVF state appears both in the ramp-up and ramp-down experiments as in the work of Majji et al. (J. Fluid Mech., vol. 835, 2018, pp. 936–969), new co-existing patterns are found only during the ramp-up protocol. The secondary bifurcation TVF $\leftrightarrow$ WTV is found to be hysteretic or sub-critical for $\unicode[STIX]{x1D719}\geqslant 0.1$. In general, there is a reduction in the value of the critical Reynolds number, i.e. $Re_{c}(\unicode[STIX]{x1D719}\neq 0)<Re_{c}(\unicode[STIX]{x1D719}=0)$, for both primary and secondary transitions. The wave speeds of both travelling waves (WTV and SVF) are approximately half of the rotational velocity of the inner cylinder, with negligible dependence on $\unicode[STIX]{x1D719}$. The analysis of the radial–axial velocity field reveals that the Taylor vortices in a suspension are asymmetric and become increasingly anharmonic, with enhanced radial transport, with increasing particle loading. Instantaneous streamline patterns on the axial–radial plane confirm that the stationary Taylor vortices can indeed co-exist either with axially propagating spiral vortices or azimuthally propagating wavy Taylor vortices – their long-time stability is demonstrated. It is shown that the azimuthal velocity is considerably altered for $\unicode[STIX]{x1D719}\geqslant 0.05$, resembling shear-band type profiles, even in the CCF regime (i.e. at sub-critical Reynolds numbers) of suspension TCF; its possible role on the genesis of observed patterns as well as on the torque scaling is discussed.


Sign in / Sign up

Export Citation Format

Share Document