scholarly journals Magneto-Burgers Nanofluid Stratified Flow with Swimming Motile Microorganisms and Dual Variables Conductivity Configured by a Stretching Cylinder/Plate

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Hassan Waqas ◽  
Umair Manzoor ◽  
Zahir Shah ◽  
Muhammad Arif ◽  
Meshal Shutaywi

Background. The study of nanofluid gains interest of researchers because of its uses in treatment of cancer, wound treatment, fuel reserves, and elevating the particles in the bloodstream to a tumour. This artefact investigates the magnetohydrodynamic flow of Burgers nanofluid with the interaction of nonlinear thermal radiation, activation energy, and motile microorganisms across a stretching cylinder. Method. The developed partial differential equations (PDEs) are transformed into a structure of ODEs with the help of similarity transformation. The extracted problem is rectified numerically by using the bvp4c program in computational software MATLAB. The novelty of analysis lies in the fact that the impacts of bioconvection with magnetic effects on Burgers nanofluid are taken into account. Moreover, the behaviours of thermal conductivity and diffusivity are discussed in detail. The impacts of activation energy and motile microorganism are also explored. No work has been published yet in the literature survey according to the authors’ knowledge. The current observation is the extension of Khan et al.’s work [51]. Results. The consequences of the relevant parameters, namely, thermophoresis parameter, Brownian motion parameter, the reaction parameter, temperature difference parameter, activation energy, bioconvection Lewis number and Peclet number against the velocity of Burgers nanofluid, temperature profile for nanoliquid, the concentration of nanoparticles, and microorganisms field, have been explored in depth. The reports had major impacts in the development of medications for the treatment of arterial diseases including atherosclerosis without any need for surgery, which may reduce spending on cardiovascular and postsurgical problems in patients. Conclusions. The current investigation depicts that fluid velocity increases for uplifting values of mixed convection parameter. Furthermore, it is analyzed that flow of fluid is risen by varying the amount of Burgers fluid parameter. The temperature distribution is escalated by escalating the values of temperature ratio parameter and thermal conductivity parameter. The concentration field turns down for elevated values of Lewis number and Brownian motion parameter, while conflicting circumstances are observed for the thermophoresis parameter and solutal Biot number. Larger values of Peclet number reduce the microorganism’s field. Physically the current model is more significant in the field of applied mathematics. Furthermore, the current model is more helpful to improve the thermal conductivity of base fluids and heat transfer rate.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdulaziz Alsenafi ◽  
O. Anwar Bég ◽  
M. Ferdows ◽  
Tasveer A. Bég ◽  
A. Kadir

AbstractA mathematical model is developed for stagnation point flow toward a stretching or shrinking sheet of liquid nano-biofilm containing spherical nano-particles and bioconvecting gyrotactic micro-organisms. Variable transport properties of the liquid (viscosity, thermal conductivity, nano-particle species diffusivity) and micro-organisms (species diffusivity) are considered. Buongiorno’s two-component nanoscale model is deployed and spherical nanoparticles in a dilute nanofluid considered. Using a similarity transformation, the nonlinear systems of partial differential equations is converted into nonlinear ordinary differential equations. These resulting equations are solved numerically using a central space finite difference method in the CodeBlocks Fortran platform. Graphical plots for the distribution of reduced skin friction coefficient, reduced Nusselt number, reduced Sherwood number and the reduced local density of the motile microorganisms as well as the velocity, temperature, nanoparticle volume fraction and the density of motile microorganisms are presented for the influence of wall velocity power-law index (m), viscosity parameter $$({c}_{2})$$ ( c 2 ) , thermal conductivity parameter (c4), nano-particle mass diffusivity (c6), micro-organism species diffusivity (c8), thermophoresis parameter $$(Nt)$$ ( N t ) , Brownian motion parameter $$(Nb)$$ ( N b ) , Lewis number $$(Le)$$ ( L e ) , bioconvection Schmidt number $$(Sc)$$ ( S c ) , bioconvection constant (σ) and bioconvection Péclet number $$(Pe)$$ ( P e ) . Validation of the solutions via comparison related to previous simpler models is included. Further verification of the general model is conducted with the Adomian decomposition method (ADM). Extensive interpretation of the physics is included. Skin friction is elevated with viscosity parameter ($${\mathrm{c}}_{2})$$ c 2 ) whereas it is suppressed with greater Lewis number and thermophoresis parameter. Temperatures are elevated with increasing thermal conductivity parameter ($${\mathrm{c}}_{4})$$ c 4 ) whereas Nusselt numbers are reduced. Nano-particle volume fraction (concentration) is enhanced with increasing nano-particle mass diffusivity parameter ($${c}_{6}$$ c 6 ) whereas it is markedly reduced with greater Lewis number (Le) and Brownian motion parameter (Nb). With increasing stretching/shrinking velocity power-law exponent ($$m),$$ m ) , skin friction is decreased whereas Nusselt number and Sherwood number are both elevated. Motile microorganism density is boosted strongly with increasing micro-organism diffusivity parameter ($${\mathrm{c}}_{8}$$ c 8 ) and Brownian motion parameter (Nb) but reduced considerably with greater bioconvection Schmidt number (Sc) and bioconvection Péclet number (Pe). The simulations find applications in deposition processes in nano-bio-coating manufacturing processes.


2019 ◽  
Vol 97 (5) ◽  
pp. 487-497
Author(s):  
Akbar Zaman ◽  
M. Sajid ◽  
Nabeela Kousar

The purpose of this article is to theoretically discuss the unsteady hemo-dynamics of blood through a catheterized overlapping stenotic vessel with nanoparticles. The nature of the blood is characterized by the constitutive Cross model equation. This study is conducted under the assumption of mild stenotic conditions and the equations of momentum and temperature are simplified after making this assumption. Explicit finite difference method is employed to obtain the numerical results of the governing equations. Results for different values of emerging parameters, such as Weissenberg number, Lewis number, thermophoresis parameter, and Brownian motion parameter are shown at different locations of an arterial cross section. These results demonstrate a pictorial way to comprehend the theoretical biomedical problem. These results reveal that Lewis number (Le) and visco-elastic parameter Weissenberg number (We) both are decreasing functions of velocity profiles at each arterial cross section. Furthermore, it is also noted that the thermophoresis parameter (Nt) quantitatively decreases the flow of blood inside the vessel while the Brownian motion parameter (Nb) shows the opposite effects on blood flow; it increases the magnitude of velocity.


2019 ◽  
Vol 29 (4) ◽  
pp. 1448-1465 ◽  
Author(s):  
Chandra Shekar Balla ◽  
C. Haritha ◽  
Kishan Naikoti ◽  
A.M. Rashad

PurposeThe purpose of this paper is to investigate the bioconvection flow in a porous square cavity saturated with both oxytactic microorganism and nanofluids.Design/methodology/approachThe impacts of the effective parameters such as Rayleigh number, bioconvection number, Peclet number and thermophoretic force, Brownan motion and Lewis number reduces the flow strength in the cavity on the flow strength, oxygen density distribution, motile isoconcentrations and heat transfer performance are investigated using a finite volume approach.FindingsThe results obtained showed that the average Nusselt number is increased with Peclet number, Lewis number, Brownian motion and thermophoretic force. Also, the average Sherwood number increased with Brownian motion and Peclet number and decreased with thermophoretic force. It is concluded that the flow strength is pronounced with Rayleigh number, bioconvection number, Peclet number and thermophoretic force. Brownan motion and Lewis number reduce the flow strength in the cavity.Originality/valueThere is no published study in the literature about sensitivity analysis of Brownian motion and thermophoresis force effects on the bioconvection heat transfer in a square cavity filled by both nanofluid and oxytactic microorganisms.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Sze Qi Chan ◽  
Fazlina Aman ◽  
Syahira Mansur

Thermobioconvection boundary layer flow in a suspension of water-based bionanofluid holding both nanoparticles and motile microorganisms past a wedge surface was studied. The governing nonlinear partial differential equations on reference of the Buongiorno model were transformed into a set of coupled nonlinear ordinary differential equations. Shooting technique was then used to solve the transformed nonlinear ordinary differential equations numerically. The solutions were found to be contingent on several values of the governing parameters. As highlighted, the velocity profile as well as the skin friction coefficient was affected by the pressure gradient parameter, the function of the wedge angle parameter. On the other hand, the temperature, nanoparticle concentration, and density of motile microorganism’s distributions together with its corresponding local Nusselt number, local Sherwood number, and local density of the motile microorganisms change with the thermophoresis and Brownian motion parameter and so Lewis number, Schmidt number, and bioconvection Péclet number. An experimental scheme together with sensitivity analysis on the basis of Response Surface Methodology (RSM) was applied to examine the dependency of the response parameters of interest to the input parameters’ change. Obviously, local Nusselt number was more sensitive towards the Brownian motion parameter when the Brownian motion parameter was at 0.2 and 0.3. However local Sherwood number was more sensitive towards the Lewis number for all values of Brownian motion parameter. Compatibility found by comparing results between RSM and shooting technique gave confidence for the model’s accuracy. The findings would provide initial guidelines for future device fabrication. Finally, the numerical results obtained were thoroughly inspected and verified with the existing values reported by some researchers.


2018 ◽  
Vol 23 (4) ◽  
pp. 1005-1013 ◽  
Author(s):  
M. Ali ◽  
M.A. Alim

Abstract In the present work, the effect of various dimensionless parameters on the momentum, thermal and concentration boundary layer are analyzed. In this respect we have considered the MHD boundary layer flow of heat and transfer over a porous wedge surface in a nanofluid. The governing partial differential equations are converted into ordinary differential equations by using the similarity transformation. These ordinary differential equations are numerically solved using fourth order Runge–Kutta method along with shooting technique. The present results have been shown in a graphical and also in tabular form. The results indicate that the momentum boundary layer thickness reduces with increasing values of the pressure gradient parameter β for different situations and also for the magnetic parameter M but increases for the velocity ratio parameter λ and permeability parameter K*. The heat transfer rate increases for the pressure gradient parameter β, velocity ratio parameter λ, Brownian motion parameter Nb and Prandtl number Pr but opposite result is found for the increasing values of the thermoporesis parameter Nt. The nanoparticle concentration rate increases with an increase in the pressure gradient parameter β, velocity ratio parameter λ, Brownian motion parameter Nb and Lewis number Le, but decreases for the thermoporesis parameter Nt. Finally, the numerical results has compared with previously published studies and found to be in good agreement. So the validity of our results is ensured.


2013 ◽  
Vol 13 (04) ◽  
pp. 1350067 ◽  
Author(s):  
O. ANWAR BÉG ◽  
V. R. PRASAD ◽  
B. VASU

A mathematical model has been developed for steady-state boundary layer flow of a nanofluid past an impermeable vertical flat wall in a porous medium saturated with a water-based dilute nanofluid containing oxytactic microorganisms. The nanoparticles were distributed sufficiently to permit bioconvection. The product of chemotaxis constant and maximum cell swimming speed was assumed invariant. Using appropriate transformations, the partial differential conservation equations were non-dimensionalised to yield a quartet of coupled, non-linear ordinary differential equations for momentum, energy, nanoparticle concentration and dimensionless motile microorganism density, with appropriate boundary conditions. The dominant parameters emerging in the normalised model included the bioconvection Lewis number, bioconvection Peclet number, Lewis number, buoyancy ratio parameter, Brownian motion parameter, thermophoresis parameter, local Darcy-Rayleigh number and the local Peclet number. An implicit numerical solution to the well-posed two-point non-linear boundary value problem is developed using the well-tested and highly efficient Keller box method. Computations are validated with the Nakamura tridiagonal implicit finite difference method, demonstrating excellent agreement. Nanoparticle concentration and temperature were found to be generally enhanced through the boundary layer with increasing bioconvection Lewis number, whereas dimensionless motile microorganism density was only increased closer to the wall. Temperature, nanoparticle concentration and dimensionless motile microorganism density were all greatly increased with a rise in Peclet number. Temperature and dimensionless motile microorganism density were reduced with increasing buoyancy parameter, whereas nanoparticle concentration was increased. The present study found applications in the fluid mechanical design of microbial fuel cell and bioconvection nanotechnological devices.


Author(s):  
Vasu B. ◽  
Atul Kumar Ray

PurposeTo achieve material-invariant formulation for heat transfer of Carreau nanofluid, the effect of Cattaneo–Christov heat flux is studied on a natural convective flow of Carreau nanofluid past a vertical plate with the periodic variations of surface temperature and the concentration of species. Buongiorno model is considered for nanofluid transport, which includes the relative slip mechanisms, Brownian motion and thermophoresis.Design/methodology/approachThe governing equations are non-dimensionalized using suitable transformations, further reduced to non-similar form using stream function formulation and solved by local non-similarity method with homotopy analysis method. The numerical computations are validated and verified by comparing with earlier published results and are found to be in good agreement.FindingsThe effects of varying the physical parameters such as Prandtl number, Schmidt number, Weissenberg number, thermophoresis parameter, Brownian motion parameter and buoyancy ratio parameter on velocity, temperature and species concentration are discussed and presented through graphs. The results explored that the velocity of shear thinning fluid is raised by increasing the Weissenberg number, while contrary response is seen for the shear thickening fluid. It is also found that heat transfer in Cattaneo–Christov heat conduction model is less than that in Fourier’s heat conduction model. Furthermore, the temperature and thermal boundary layer thickness expand with the increase in thermophoresis and Brownian motion parameter, whereas nanoparticle volume fraction increases with increase in thermophoresis parameter, but reverse trend is observed with increase in Brownian motion parameter.Originality/valueThe present investigation is relatively original as very little research has been reported on Carreau nanofluids under the effect of Cattaneo–Christov heat flux model.


2019 ◽  
Vol 8 (1) ◽  
pp. 744-754 ◽  
Author(s):  
Sumit Gupta ◽  
Sandeep Gupta

Abstract Current article is devoted with the study of MHD 3D flow of Oldroyd B type nanofluid induced by bi-directional stretching sheet. Expertise similarity transformation is confined to reduce the governing partial differential equations into ordinary nonlinear differential equations. These dimensionless equations are then solved by the Differential Transform Method combined with the Padé approximation (DTM-Padé). Dealings of the arising physical parameters namely the Deborah numbers β1 and β2, Prandtl number Pr, Brownian motion parameter Nb and thermophoresis parameter Nt on the fluid velocity, temperature and concentration profile are depicted through graphs. Also a comparative study between DTM and numerical method are presented by graph and other semi-analytical techniques through tables. It is envisage that the velocity profile declines with rising magnetic factor, temperature profile increases with magnetic parameter, Deborah number of first kind and Brownian motion parameter while decreases with Deborah number of second kind and Prandtl number. A comparative study also visualizes comparative study in details.


Entropy ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 986 ◽  
Author(s):  
Noreen ◽  
Waheed ◽  
Hussanan ◽  
Lu

A theoretical study is presented to examine entropy generation in double-diffusive convection in an Electro-osmotic flow (EOF) of nanofluids via a peristaltic microchannel. Buoyancy effects due to change in temperature, solute concentration and nanoparticle volume fraction are also considered. This study was performed under lubrication and Debye-Hückel linearization approximation. The governing equations are solved exactly. The effect of dominant hydrodynamic parameters (thermophoresis, Brownian motion, Soret and Dufour), Grashof numbers (thermal, concentration and nanoparticle) and electro-osmotic parameters on double-diffusive convective flow are discussed. Moreover, trapping, pumping, entropy generation number, Bejan number and heat transfer rate were also examined under the influence of pertinent parameters such as the thermophoresis parameter, the Brownian motion parameter, the Soret parameter, the Dufour parameter, the thermal Grashof number, the solutal Grashof number, the nanoparticle Grashof number, the electro-osmotic parameter and Helmholtz–Smoluchowski velocity. The electro-osmotic parameter powerfully affected the velocity profile. The magnitude of total entropy generation increased as the thermophoresis parameter and Brownian motion parameter increased. Soret and the Dufour parameter had a strong tendency to control the temperature profile and Bejan number. The findings of the present analysis can be used in clinical purposes such as cell therapy, drug delivery systems, pharmaco-dynamic pumps and particles filtration.


2018 ◽  
Vol 18 (01) ◽  
pp. 1850007 ◽  
Author(s):  
O. ANWAR BÉG ◽  
AYESHA SOHAIL ◽  
ALI KADIR ◽  
T. A. BÉG

A mathematical model is presented for magnetized nanofluid bio-tribological squeeze-film flow between two approaching disks. The nanofluid comprises a suspension of metal oxide nanoparticles with an electrically-conducting base fluid, making the nanosuspension responsive to applied magnetic field. The governing viscous momentum, heat and species (nanoparticle) conservation equations are normalized with appropriate transformations which renders the original coupled, non-linear partial differential equation system into a more amenable ordinary differential boundary value problem. The emerging model is shown to be controlled by a number of parameters, viz nanoparticle volume fraction, squeeze number, Hartmann magnetic body force number, disk surface transpiration parameter, Brownian motion parameter, thermophoretic parameter, Prandtl number and Lewis number. Computations are conducted with a B-spline collocation numerical method. Validation with previous homotopy solutions is included. The numerical spline algorithm is shown to achieve excellent convergence and stability in non-linear bio-tribological boundary value problems. The interaction of heat and mass transfer with nanofluid velocity characteristics is explored. In particular, smaller nanoparticle (high Brownian motion parameter) suspensions are studied. The study is relevant to enhanced lubrication performance in novel bio-sensors and intelligent knee joint (orthopaedic) systems.


Sign in / Sign up

Export Citation Format

Share Document