scholarly journals Weak turbulence theory for rotating magnetohydrodynamics and planetary flows

2014 ◽  
Vol 757 ◽  
pp. 114-154 ◽  
Author(s):  
Sébastien Galtier

AbstractA weak turbulence theory is derived for magnetohydrodynamics (MHD) under rapid rotation and in the presence of a uniform large-scale magnetic field which is associated with a constant Alfvén velocity $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}{\boldsymbol {b}}_{{0}}$. The angular velocity ${\boldsymbol{\Omega}}_{{0}}$ is assumed to be uniform and parallel to ${\boldsymbol {b}}_{{0}}$. Such a system exhibits left and right circularly polarized waves which can be obtained by introducing the magneto-inertial length $d \equiv b_0/\varOmega _0$. In the large-scale limit ($kd \to 0$, with $k$ being the wavenumber) the left- and right-handed waves tend to the inertial and magnetostrophic waves, respectively, whereas in the small-scale limit ($kd \to + \infty $) pure Alfvén waves are recovered. By using a complex helicity decomposition, the asymptotic weak turbulence equations are derived which describe the long-time behaviour of weakly dispersive interacting waves via three-wave interaction processes. It is shown that the nonlinear dynamics is mainly anisotropic, with a stronger transfer perpendicular than parallel to the rotation axis. The general theory may converge to pure weak inertial/magnetostrophic or Alfvén wave turbulence when the large- or small-scale limits are taken, respectively. Inertial wave turbulence is asymptotically dominated by the kinetic energy/helicity, whereas the magnetostrophic wave turbulence is dominated by the magnetic energy/helicity. For both regimes, families of exact solutions are found for the spectra, which do not correspond necessarily to a maximal helicity state. It is shown that the hybrid helicity exhibits a cascade whose direction may vary according to the scale $k_f$ at which the helicity flux is injected, with an inverse cascade if $k_fd < 1$ and a direct cascade otherwise. The theory is relevant to the magnetostrophic dynamo, whose main applications are the Earth and the giant planets, such as Jupiter and Saturn, for which a small (${\sim }10^{-6}$) Rossby number is expected.

2016 ◽  
Vol 794 ◽  
Author(s):  
Antoine Campagne ◽  
Nathanaël Machicoane ◽  
Basile Gallet ◽  
Pierre-Philippe Cortet ◽  
Frédéric Moisy

What is the turbulent drag force experienced by an object moving in a rotating fluid? This open and fundamental question can be addressed by measuring the torque needed to drive an impeller at a constant angular velocity ${\it\omega}$ in a water tank mounted on a platform rotating at a rate ${\it\Omega}$. We report a dramatic reduction in drag as ${\it\Omega}$ increases, down to values as low as 12 % of the non-rotating drag. At small Rossby number $Ro={\it\omega}/{\it\Omega}$, the decrease in the drag coefficient $K$ follows the approximate scaling law $K\sim Ro$, which is predicted in the framework of nonlinear inertial-wave interactions and weak-turbulence theory. However, stereoscopic particle image velocimetry measurements indicate that this drag reduction instead originates from a weakening of the turbulence intensity in line with the two-dimensionalization of the large-scale flow.


1975 ◽  
Vol 67 (3) ◽  
pp. 417-443 ◽  
Author(s):  
W. V. R. Maekus ◽  
M. R. E. Proctor

Past study of the large-scale consequences of forced small-scale motions in electrically conducting fluids has led to the ‘α-effect’ dynamos. Various linear kinematic aspects of these dynamos have been explored, suggesting their value in the interpretation of observed planetary and stellar magnetic fields. However, large-scale magnetic fields with global boundary conditions can not be force free and in general will cause large-scale motions as they grow. I n this paper the finite amplitude behaviour of global magnetic fields and the large-scale flows induced by them in rotating systems is investigated. In general, viscous and ohmic dissipative mechanisms both play a role in determining the amplitude and structure of the flows and magnetic fields which evolve. In circumstances where ohmic loss is the principal dissipation, it is found that determination of a geo- strophic flow is an essential part of the solution of the basic stability problem. Nonlinear aspects of the theory include flow amplitudes which are independent of the rotation and a total magnetic energy which is directly proportional to the rotation. Constant a is the simplest example exhibiting the various dynamic balances of this stabilizing mechanism for planetary dynamos. A detailed analysis is made for this case to determine the initial equilibrium of fields and flows in a rotating sphere.


2021 ◽  
Vol 28 (10) ◽  
pp. 102302
Author(s):  
E. C. Fonseca-Pongutá ◽  
L. F. Ziebell ◽  
R. Gaelzer

2017 ◽  
Vol 83 (4) ◽  
Author(s):  
Gregory G. Howes ◽  
Sofiane Bourouaine

Plasma turbulence occurs ubiquitously in space and astrophysical plasmas, mediating the nonlinear transfer of energy from large-scale electromagnetic fields and plasma flows to small scales at which the energy may be ultimately converted to plasma heat. But plasma turbulence also generically leads to a tangling of the magnetic field that threads through the plasma. The resulting wander of the magnetic field lines may significantly impact a number of important physical processes, including the propagation of cosmic rays and energetic particles, confinement in magnetic fusion devices and the fundamental processes of turbulence, magnetic reconnection and particle acceleration. The various potential impacts of magnetic field line wander are reviewed in detail, and a number of important theoretical considerations are identified that may influence the development and saturation of magnetic field line wander in astrophysical plasma turbulence. The results of nonlinear gyrokinetic simulations of kinetic Alfvén wave turbulence of sub-ion length scales are evaluated to understand the development and saturation of the turbulent magnetic energy spectrum and of the magnetic field line wander. It is found that turbulent space and astrophysical plasmas are generally expected to contain a stochastic magnetic field due to the tangling of the field by strong plasma turbulence. Future work will explore how the saturated magnetic field line wander varies as a function of the amplitude of the plasma turbulence and the ratio of the thermal to magnetic pressure, known as the plasma beta.


2021 ◽  
Vol 28 (12) ◽  
pp. 122302
Author(s):  
Peter H. Yoon ◽  
Luiz F. Ziebell

2004 ◽  
Vol 11 (5/6) ◽  
pp. 535-543 ◽  
Author(s):  
Y. Voitenko ◽  
M. Goossens

Abstract. There is abundant observational evidence that the energization of plasma particles in space is correlated with an enhanced activity of large-scale MHD waves. Since these waves cannot interact with particles, we need to find ways for these MHD waves to transport energy in the dissipation range formed by small-scale or high-frequency waves, which are able to interact with particles. In this paper we consider the dissipation range formed by the kinetic Alfvén waves (KAWs) which are very short- wavelengths across the magnetic field irrespectively of their frequency. We study a nonlocal nonlinear mechanism for the excitation of KAWs by MHD waves via resonant decay AW(FW)→KAW1+KAW2, where the MHD wave can be either an Alfvén wave (AW), or a fast magneto-acoustic wave (FW). The resonant decay thus provides a non-local energy transport from large scales directly in the dissipation range. The decay is efficient at low amplitudes of the magnetic field in the MHD waves, B/B0~10-2. In turn, KAWs are very efficient in the energy exchange with plasma particles, providing plasma heating and acceleration in a variety of space plasmas. An anisotropic energy deposition in the field-aligned degree of freedom for the electrons, and in the cross-field degrees of freedom for the ions, is typical for KAWs. A few relevant examples are discussed concerning nonlinear excitation of KAWs by the MHD wave flux and consequent plasma energization in the solar corona and terrestrial magnetosphere.


Sign in / Sign up

Export Citation Format

Share Document