dissipation range
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 8)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Vol 923 (2) ◽  
pp. 193
Author(s):  
R. Bandyopadhyay ◽  
D. J. McComas

Abstract Solar wind magnetic fluctuations exhibit anisotropy due to the presence of a mean magnetic field in the form of the Parker spiral. Close to the Sun, direct measurements were not available until the recently launched Parker Solar Probe (PSP) mission. The nature of the anisotropy and geometry of the magnetic fluctuations play a fundamental role in dissipation processes and in the transport of energetic particles in space. Using PSP data, we present measurements of the geometry and anisotropy of the inner heliosphere magnetic fluctuations, from fluid to kinetic scales. The results are surprising and different from 1 au observations. We find that fluctuations evolve characteristically with size scale. However, unlike 1 au solar wind, at the outer scale, the fluctuations are dominated by wavevectors quasi-parallel to the local magnetic field. In the inertial range, average wavevectors become less field aligned, but still remain more field aligned than near-Earth solar wind. In the dissipation range, the wavevectors become almost perpendicular to the local magnetic field in the dissipation range, to a much higher degree than those indicated by 1 au observations. We propose that this reduced degree of anisotropy in the outer scale and inertial range is due to the nature of large-scale forcing outside the solar corona.


2021 ◽  
Author(s):  
Fernanda Leticia dos Santos ◽  
Laura Botero ◽  
Cornelius Venner ◽  
Leandro D. de Santana

2021 ◽  
Author(s):  
Du Toit Strauss ◽  
Gert Botha ◽  
James Chibueze ◽  
Eduard Kontar ◽  
Eugene Engelbrecht ◽  
...  

<p>When point-like galactic and extragalactic radio sources are observed through the solar corona by ground-based radio telescopes, plasma density fluctuations in the turbulent solar wind scatter these photons, leading to an observed broadening and/or elongation of such sources. By observing this broadening for several sources, over several days, we can get information about e.g. the wavenumber and radial dependence of solar wind density fluctuations at very small scales (~30m - 8km) inside the Alfven radius, thereby capturing details of the turbulence dissipation range. Here, we present very initial results of such a study with the MeerKAT radio telescope in South Africa (being, of course, a precursor to the much larger Square Kilometer Array, SKA), discuss the preliminary results, and compare these with theoretical estimates and previous observations.</p>


2021 ◽  
Author(s):  
Giuseppe Arrò ◽  
Francesco Califano ◽  
Giovanni Lapenta

<p>Turbulence in collisionless magnetized plasmas is a complex multi-scale process involving many decades of scales ranging from large magnetohydrodynamic (MHD) scales down to small ion and electron kinetic scales, associated with different physical regimes. It is well know that the MHD turbulent cascade is driven by the nonlinear interaction of low-frequency Alfvén waves but, on the other hand, the properties of plasma turbulence at sub-ion scales are not yet fully understood. In addition to a great variety of relatively high frequency modes such as kinetic Alfvén waves and whistler waves, magnetic reconnection has been suggested to be a key element in the development of kinetic scale turbulence because it allows for energy to be transferred from large scales directly into sub-ion scales through currents sheets disruption. In this context, an unusual reconnection mechanism driven exclusively by the electrons (with ions being demagnetized), called "electron-only reconnection", has been recently observed for the first time in the Earth’s magnetosheath and its role in plasma turbulence is still a matter of great debate. <br><br>Using 2D-3V hybrid Vlasov-Maxwell (HVM) simulations of freely decaying plasma turbulence, we investigate and compare the properties of the turbulence associated with standard ion-coupled reconnection and of the turbulence associated with electron-only reconnection [Califano et al., 2018]. By analyzing the structure functions of the turbulent magnetic field and ion fluid velocity fluctuations, we find that the turbulence associated with electron-only reconnection shows the same statistical features as the turbulence associated with standard ion-coupled reconnection and no peculiar signature related to electron-only reconnection is found in the turbulence statistics. This result suggests that the properties of the turbulent cascade in a magnetized plasma are independent of the specific mechanism associated with magnetic reconnection but depend only on the coupling between the magnetic field and the different particle species present in the system. Finally, the properties of the magnetic field dissipation range are discussed as well and we claim that its formation, and thus the dissipation of magnetic energy, is driven only by the small scale electron dynamics since ions are demagnetized in this range [Arró et al., 2020].<br><br>This work has received funding from the European Union Horizon 2020 research and innovation programme under grant agreement No 776262 (AIDA, www.aida-space.eu).<br><br>References:<br><br>G. Arró, F. Califano, and G. Lapenta. Statistical properties of turbulent fluctuations associated with electron-only magnetic reconnection. , 642:A45, Oct. 2020. doi: 10.1051/0004-6361/202038696.<br><br>F. Califano, S. S. Cerri, M. Faganello, D. Laveder, M. Sisti, and M. W. Kunz. Electron-only magnetic reconnection in plasma turbulence. arXiv e-prints, art. arXiv:1810.03957, Oct. 2018.</p>


2020 ◽  
Vol 32 (9) ◽  
pp. 095104
Author(s):  
Shailendra K. Rathor ◽  
Manohar Kumar Sharma ◽  
Samriddhi Sankar Ray ◽  
Sagar Chakraborty

2019 ◽  
Vol 100 (5) ◽  
Author(s):  
Akanksha Gupta ◽  
Rohith Jayaram ◽  
Anando G. Chaterjee ◽  
Shubhadeep Sadhukhan ◽  
Ravi Samtaney ◽  
...  

2019 ◽  
Vol 92 (9) ◽  
Author(s):  
Debarghya Banerjee

Abstract Energy spectrum of turbulent fluids exhibit a bump at an intermediate wavenumber, between the inertial and the dissipation range. This bump is called bottleneck. Such bottlenecks are also seen in the energy spectrum of the solutions of hyperviscous Burgers equation. Previous work have shown that this bump corresponds to oscillations in real space velocity field. In this paper, we present numerical and analytical results of how the bottleneck and its real space signature, the oscillations, grow as we tune the order of hyperviscosity. We look at a parameter regime α ∈ [1, 2] where α = 1 corresponds to normal viscosity and α = 2 corresponds to hyperviscosity of order 2. We show that even for the slightest fractional increment in the order of hyperviscosity (α) bottlenecks show up in the energy spectrum. Graphical abstract


2018 ◽  
Vol 860 ◽  
pp. 465-486 ◽  
Author(s):  
Nimish Pujara ◽  
Greg A. Voth ◽  
Evan A. Variano

We examine the dynamics of slender, rigid rods in direct numerical simulation of isotropic turbulence. The focus is on the statistics of three quantities and how they vary as rod length increases from the dissipation range to the inertial range. These quantities are (i) the steady-state rod alignment with respect to the perceived velocity gradients in the surrounding flow, (ii) the rate of rod reorientation (tumbling) and (iii) the rate at which the rod end points move apart (stretching). Under the approximations of slender-body theory, the rod inertia is neglected and rods are modelled as passive particles in the flow that do not affect the fluid velocity field. We find that the average rod alignment changes qualitatively as rod length increases from the dissipation range to the inertial range. While rods in the dissipation range align most strongly with fluid vorticity, rods in the inertial range align most strongly with the most extensional eigenvector of the perceived strain-rate tensor. For rods in the inertial range, we find that the variance of rod stretching and the variance of rod tumbling both scale as $l^{-4/3}$, where $l$ is the rod length. However, when rod dynamics are compared to two-point fluid velocity statistics (structure functions), we see non-monotonic behaviour in the variance of rod tumbling due to the influence of small-scale fluid motions. Additionally, we find that the skewness of rod stretching does not show scale invariance in the inertial range, in contrast to the skewness of longitudinal fluid velocity increments as predicted by Kolmogorov’s $4/5$ law. Finally, we examine the power-law scaling exponents of higher-order moments of rod tumbling and rod stretching for rods with lengths in the inertial range and find that they show anomalous scaling. We compare these scaling exponents to predictions from Kolmogorov’s refined similarity hypotheses.


2018 ◽  
Vol 53 (6) ◽  
pp. 862-873 ◽  
Author(s):  
M. K. Verma ◽  
A. Kumar ◽  
P. Kumar ◽  
S. Barman ◽  
A. G. Chatterjee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document