scholarly journals On the interaction of a planar shock with an polygon

2015 ◽  
Vol 773 ◽  
pp. 366-394 ◽  
Author(s):  
Xisheng Luo ◽  
Minghu Wang ◽  
Ting Si ◽  
Zhigang Zhai

The interaction of a planar shock wave ($M\approx 1.2$) with an $\text{SF}_{6}$ polygonal inhomogeneity surrounded by air is experimentally investigated. Six polygons including a square, two types of rectangle, two types of triangle, and a diamond are generated by the soap film technique developed in our previous work, in which thin pins are used as angular vertexes to avoid the pressure singularities caused by the surface tension. The evolutions of the shock-accelerated $\text{SF}_{6}$ polygons are captured by a high-speed schlieren system from which wave systems and the interface characteristics can be clearly identified. Both regular and irregular refraction phenomena are observed outside the volume, and more complex wave patterns, including transmitted shock, refracted shock, Mach stem and the interactions between them, are found inside the volume. Two typical irregular refraction phenomena (free precursor refraction, FPR, and free precursor von Neumann refraction, FNR) are observed and analysed, and the transition from FPR to FNR is found, providing the experimental evidence for the transition between different wave patterns numerically found in the literature. Combined with our previous work (Zhai et al., J. Fluid Mech., vol. 757, 2014, pp. 800–816), the reciprocal transitions between FPR and FNR are experimentally confirmed. The velocities and trajectories of the triple points are further measured and it is found that the motions of the triple points are self-similar or pseudo-stationary. Besides the shock dynamics phenomena, the evolutions of these shocked heavy polygonal volumes, which are quite different from the light ones, are captured and found to be closely related to their initial shapes. Specifically, for square and rectangular geometries, the different width–height ratios result in different behaviours of shock–shock interaction inside the volume, and subsequently different features for the outward jet and the interface. Quantitatively, the time-variations of the interface scales, such as the width and the normalized displacements of the edges, are obtained and compared with those from previous work. The comparison illustrates the superiority of the interface formation method and the significant effect of the initial interface shape on the interface features. Furthermore, the characteristics of the vortex core, including the velocity and vortex spacing, are experimentally measured, and the vortex velocity is compared with those from some circulation models to check the validity of the models. The results in the present work enrich understanding of the shock refraction phenomenon and the database of research into Richtmyer–Meshkov instability (RMI).

2014 ◽  
Vol 757 ◽  
pp. 800-816 ◽  
Author(s):  
Zhigang Zhai ◽  
Minghu Wang ◽  
Ting Si ◽  
Xisheng Luo

AbstractThe interaction of a planar shock wave with a polygonal $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}{\mathrm{N}}_2$ volume surrounded by ${\mathrm{SF}}_6$ is investigated experimentally and numerically. Three polygonal interfaces (square, triangle and diamond) are formed by the soap film technique developed in our previous work, in which thin pins are introduced as angular vertexes to connect adjacent sides of polygonal soap films. The evolutions of the shock-accelerated polygonal interfaces are then visualized by a high-speed schlieren system. Wave systems and interface structures can be clearly identified in experimental schlieren images, and agree well with the numerical ones. Quantitatively, the movement of the distorted interface, and the length and height of the interface structures are further compared and good agreements are achieved between experimental and numerical results. It is found that the evolution of these polygonal interfaces is closely related to their initial shapes. In the square interface, two vortices are generated shortly after the shock impact around the left corner and dominate the flow field at late stages. In the triangular and diamond cases, the most remarkable feature is the small ‘${\mathrm{SF}}_6$ jet’ which grows constantly with time and penetrates the downstream boundary of the interface, forming two independent vortices. These distinct morphologies of the three polygonal interfaces also lead to the different behaviours of the interface features including the length and height. It is also found that the velocities of the vortex pair predicted from the theory of Rudinger and Somers (J. Fluid Mech., vol. 7, 1960, pp. 161–176) agree with the experimental ones, especially for the square case. Typical free precursor irregular refraction phenomena and the transitions among them are observed and analysed, which gives direct experimental evidence for wave patterns and their transitions at a slow/fast interface. The velocities of triple points and shocks are experimentally measured. It is found that the transmitted shock near the interface boundary has weakened into an evanescent wave.


2001 ◽  
Vol 437 ◽  
pp. 255-282 ◽  
Author(s):  
O. IGRA ◽  
X. WU ◽  
J. FALCOVITZ ◽  
T. MEGURO ◽  
K. TAKAYAMA ◽  
...  

The complex flow and wave pattern following an initially planar shock wave transmitted through a double-bend duct is studied experimentally and theoretically/numerically. Several different double-bend duct geometries are investigated in order to assess their effects on the accompanying flow and shock wave attenuation while passing through these ducts. The effect of the duct wall roughness on the shock wave attenuation is also studied. The main flow diagnostic used in the experimental part is either an interferometric study or alternating shadow–schlieren diagnostics. The photos obtained provide a detailed description of the flow evolution inside the ducts investigated. Pressure measurements were also taken in some of the experiments. In the theoretical/numerical part the conservation equations for an inviscid, perfect gas were solved numerically. It is shown that the proposed physical model (Euler equations), which is solved by using the second-order-accurate, high-resolution GRP (generalized Riemann problem) scheme, can simulate such a complex, time-dependent process very accurately. Specifically, all wave patterns are numerically simulated throughout the entire interaction process. Excellent agreement is found between the numerical simulation and the experimental results. The efficiency of a double-bend duct in providing a shock wave attenuation is clearly demonstrated.


2014 ◽  
Vol 136 (9) ◽  
Author(s):  
Liyong Zou ◽  
Wenbin Huang ◽  
Cangli Liu ◽  
Jun Yu ◽  
Xisheng Luo

The evolution of double elliptic heavy-gas (SF6) cylinders impacted by a planar shock wave is studied by high-speed camera diagnostics. The minor axes (b) of the elliptic cross sections are aligned perpendicular to the shock direction. While the cylinder dimensions are fixed, we adjust the center-to-center separation s between the cylinders. The resulting flow morphologies are visualized and the interaction between double cylinders is analyzed. When s/b = 4.0 or 3.0, the two elliptical cylinders roll up into two counter-rotating vortex pairs and their interaction is weak. When s/b decreases to 2.0 or 1.2, due to strong interaction of the two inner vortices, the inner structure completely disappears and the flow morphology evolves into one counter-vortex pair. Compared with the s/b = 2.0 case, larger amount of baroclinic vorticity is produced in the s/b = 1.2 case, and the morphology is similar to the single elliptic cylinder case, with a second vortex phenomenon occurring at later times. As s/b increases, the extent of cylinder-cylinder interaction becomes weaker, and the integral height of double elliptic cylinders grows while the length decreases.


2017 ◽  
Vol 828 ◽  
pp. 289-317 ◽  
Author(s):  
Juchun Ding ◽  
Ting Si ◽  
Mojun Chen ◽  
Zhigang Zhai ◽  
Xiyun Lu ◽  
...  

Experimental and numerical investigations on the interaction of a planar shock wave with two-dimensional (2-D) and three-dimensional (3-D) light gas cylinders are performed. The effects of initial interface curvature on flow morphology, wave pattern, vorticity distribution and interface movement are emphasized. In experiments, a wire-restriction method based on the soap film technique is employed to generate N$_{2}$ cylinders surrounded by SF$_{6}$ with well-characterized shapes, including a convex cylinder, a concave cylinder with a minimum-surface feature and a 2-D cylinder. The high-speed schlieren pictures demonstrate that fewer disturbance waves exist in the flow field and the evolving interfaces develop in a more symmetrical way relative to previous studies. By combining the high-order weighted essentially non-oscillatory construction with the double-flux scheme, numerical simulation is conducted to explore the detailed 3-D flow structures. It is indicated that the shape and the size of 3-D gas cylinders in different planes along the vertical direction change gradually due to the existence of both horizontal and vertical velocities of the flow. At very early stages, pressure oscillations in the vicinity of evolving interfaces induced by complex waves contribute much to the deformation of the 3-D gas cylinders. As time proceeds, the development of the shocked volume would be dominated by the baroclinic vorticity deposited on the interface. In comparison with the 2-D case, the oppositely (or identically) signed principal curvatures of the concave (or convex) SF$_{6}$/N$_{2}$ boundary cause complex high pressure zones and additional vorticity deposition, and the upstream interface from the symmetric slice of the concave (or convex) N$_{2}$ cylinder moves with an inhibition (or a promotion). Finally, a generalized 3-D theoretical model is proposed for predicting the upstream interface movements of different gas cylinders and the present experimental and numerical findings are well predicted.


2009 ◽  
Vol 627 ◽  
pp. 33-53 ◽  
Author(s):  
P. DELMONT ◽  
R. KEPPENS ◽  
B. VAN DER HOLST

We study the classical problem of planar shock refraction at an oblique density discontinuity, separating two gases at rest. When the shock impinges on the density discontinuity, it refracts, and in the hydrodynamical case three signals arise. Regular refraction means that these signals meet at a single point, called the triple point. After reflection from the top wall, the contact discontinuity becomes unstable due to local Kelvin–Helmholtz instability, causing the contact surface to roll up and develop the Richtmyer–Meshkov instability (RMI). We present an exact Riemann-solver-based solution strategy to describe the initial self-similar refraction phase, by which we can quantify the vorticity deposited on the contact interface. We investigate the effect of a perpendicular magnetic field and quantify how its addition increases the deposition of vorticity on the contact interface slightly under constant Atwood number. We predict wave-pattern transitions, in agreement with experiments, von Neumann shock refraction theory and numerical simulations performed with the grid-adaptive code AMRVAC. These simulations also describe the later phase of the RMI.


2018 ◽  
Vol 861 ◽  
pp. 309-327 ◽  
Author(s):  
Xisheng Luo ◽  
Yu Liang ◽  
Ting Si ◽  
Zhigang Zhai

The development of a non-periodic $\text{air}\text{/}\text{SF}_{6}$ gaseous interface subjected to a planar shock wave is investigated experimentally and theoretically to evaluate the effects of the non-periodic portions of the interface on the Richtmyer–Meshkov instability. Experimentally, five kinds of discontinuous chevron-shaped interfaces with or without non-periodic portions are created by the extended soap film technique. The post-shock flows and the interface morphologies are captured by schlieren photography combined with a high-speed video camera. A periodic chevron-shaped interface, which is multi-modal (81 % fundamental mode and 19 % high-order modes), is first considered to evaluate the impulsive linear model and several typical nonlinear models. Then, the non-periodic chevron-shaped interfaces are investigated and the results show that the existence of non-periodic portions significantly changes the balanced position of the initial interface, and subsequently disables the nonlinear model which is applicable to the periodic chevron-shaped interface. A modified nonlinear model is proposed to consider the effects of the non-periodic portions. It turns out that the new model can predict the growth of the shocked non-periodic interface well. Finally, a method is established using spectrum analysis on the initial shape of the interface to separate its bubble structure and spike structure such that the new model can apply to any random perturbed interface. These findings can facilitate the understanding of the evolution of non-periodic interfaces which are more common in reality.


2016 ◽  
Vol 57 (8) ◽  
Author(s):  
V. Rodriguez ◽  
G. Jourdan ◽  
A. Marty ◽  
A. Allou ◽  
J.-D. Parisse

Sign in / Sign up

Export Citation Format

Share Document