scholarly journals Nonlinear evolution of linear optimal perturbations of strongly stratified shear layers

2017 ◽  
Vol 825 ◽  
pp. 213-244 ◽  
Author(s):  
A. K. Kaminski ◽  
C. P. Caulfield ◽  
J. R. Taylor

The Miles–Howard theorem states that a necessary condition for normal-mode instability in parallel, inviscid, steady stratified shear flows is that the minimum gradient Richardson number, $Ri_{g,min}$, is less than $1/4$ somewhere in the flow. However, the non-normality of the Navier–Stokes and buoyancy equations may allow for substantial perturbation energy growth at finite times. We calculate numerically the linear optimal perturbations which maximize the perturbation energy gain for a stably stratified shear layer consisting of a hyperbolic tangent velocity distribution with characteristic velocity $U_{0}^{\ast }$ and a uniform stratification with constant buoyancy frequency $N_{0}^{\ast }$. We vary the bulk Richardson number $Ri_{b}=N_{0}^{\ast 2}h^{\ast 2}/U_{0}^{\ast 2}$ (corresponding to $Ri_{g,min}$) between 0.20 and 0.50 and the Reynolds numbers $\mathit{Re}=U_{0}^{\ast }h^{\ast }/\unicode[STIX]{x1D708}^{\ast }$ between 1000 and 8000, with the Prandtl number held fixed at $\mathit{Pr}=1$. We find the transient growth of non-normal perturbations may be sufficient to trigger strongly nonlinear effects and breakdown into small-scale structures, thereby leading to enhanced dissipation and non-trivial modification of the background flow even in flows where $Ri_{g,min}>1/4$. We show that the effects of nonlinearity are more significant for flows with higher $\mathit{Re}$, lower $Ri_{b}$ and higher initial perturbation amplitude $E_{0}$. Enhanced kinetic energy dissipation is observed for higher-$Re$ and lower-$Ri_{b}$ flows, and the mixing efficiency, quantified here by $\unicode[STIX]{x1D700}_{p}/(\unicode[STIX]{x1D700}_{p}+\unicode[STIX]{x1D700}_{k})$ where $\unicode[STIX]{x1D700}_{p}$ is the dissipation rate of density variance and $\unicode[STIX]{x1D700}_{k}$ is the dissipation rate of kinetic energy, is found to be approximately 0.35 for the most strongly nonlinear cases.

2012 ◽  
Vol 695 ◽  
pp. 235-256 ◽  
Author(s):  
Zhiyu Liu ◽  
S. A. Thorpe ◽  
W. D. Smyth

AbstractThe Taylor–Goldstein (T–G) equation is extended to include the effects of small-scale turbulence represented by non-uniform vertical and horizontal eddy viscosity and diffusion coefficients. The vertical coefficients of viscosity and diffusion, ${A}_{V} $ and ${K}_{V} $, respectively, are assumed to be equal and are expressed in terms of the buoyancy frequency of the flow, $N$, and the dissipation rate of turbulent kinetic energy per unit mass, $\varepsilon $, quantities that can be measured in the sea. The horizontal eddy coefficients, ${A}_{H} $ and ${K}_{H} $, are taken to be proportional to the dimensionally correct form, ${\varepsilon }^{1/ 3} {l}^{4/ 3} $, found appropriate in the description of horizontal dispersion of a field of passive markers of scale $l$. The extended T–G equation is applied to examine the stability and greatest growth rates in a turbulent shear flow in stratified waters near a sill, that at the entrance to the Clyde Sea in the west of Scotland. Here the main effect of turbulence is a tendency towards stabilizing the flow; the greatest growth rates of small unstable disturbances decrease, and in some cases flows that are unstable in the absence of turbulence are stabilized when its effects are included. It is conjectured that stabilization of a flow by turbulence may lead to a repeating cycle in which a flow with low levels of turbulence becomes unstable, increasing the turbulent dissipation rate and so stabilizing the flow. The collapse of turbulence then leads to a condition in which the flow may again become unstable, the cycle repeating. Two parameters are used to describe the ‘marginality’ of the observed flows. One is based on the proximity of the minimum flow Richardson number to the critical Richardson number, the other on the change in dissipation rate required to stabilize or destabilize an observed flow. The latter is related to the change needed in the flow Reynolds number to achieve zero growth rate. The unstable flows, typical of the Clyde Sea site, are relatively further from neutral stability in Reynolds number than in Richardson number. The effects of turbulence on the hydraulic state of the flow are assessed by examining the speed and propagation direction of long waves in the Clyde Sea. Results are compared to those obtained using the T–G equation without turbulent viscosity or diffusivity. Turbulence may change the state of a flow from subcritical to supercritical.


2001 ◽  
Vol 428 ◽  
pp. 349-386 ◽  
Author(s):  
E. J. STRANG ◽  
H. J. S. FERNANDO

The results of a laboratory experiment designed to study turbulent entrainment at sheared density interfaces are described. A stratified shear layer, across which a velocity difference ΔU and buoyancy difference Δb is imposed, separates a lighter upper turbulent layer of depth D from a quiescent, deep lower layer which is either homogeneous (two-layer case) or linearly stratified with a buoyancy frequency N (linearly stratified case). In the parameter ranges investigated the flow is mainly determined by two parameters: the bulk Richardson number RiB = ΔbD/ΔU2 and the frequency ratio fN = ND=ΔU.When RiB > 1.5, there is a growing significance of buoyancy effects upon the entrainment process; it is observed that interfacial instabilities locally mix heavy and light fluid layers, and thus facilitate the less energetic mixed-layer turbulent eddies in scouring the interface and lifting partially mixed fluid. The nature of the instability is dependent on RiB, or a related parameter, the local gradient Richardson number Rig = N2L/ (∂u/∂z)2, where NL is the local buoyancy frequency, u is the local streamwise velocity and z is the vertical coordinate. The transition from the Kelvin–Helmholtz (K-H) instability dominated regime to a second shear instability, namely growing Hölmböe waves, occurs through a transitional regime 3.2 < RiB < 5.8. The K-H activity completely subsided beyond RiB ∼ 5 or Rig ∼ 1. The transition period 3.2 < RiB < 5 was characterized by the presence of both K-H billows and wave-like features, interacting with each other while breaking and causing intense mixing. The flux Richardson number Rif or the mixing efficiency peaked during this transition period, with a maximum of Rif ∼ 0.4 at RiB ∼ 5 or Rig ∼ 1. The interface at 5 < RiB < 5.8 was dominated by ‘asymmetric’ interfacial waves, which gradually transitioned to (symmetric) Hölmböe waves at RiB > 5:8.Laser-induced fluorescence measurements of both the interfacial buoyancy flux and the entrainment rate showed a large disparity (as large as 50%) between the two-layer and the linearly stratified cases in the range 1.5 < RiB < 5. In particular, the buoyancy flux (and the entrainment rate) was higher when internal waves were not permitted to propagate into the deep layer, in which case more energy was available for interfacial mixing. When the lower layer was linearly stratified, the internal waves appeared to be excited by an ‘interfacial swelling’ phenomenon, characterized by the recurrence of groups or packets of K-H billows, their degeneration into turbulence and subsequent mixing, interfacial thickening and scouring of the thickened interface by turbulent eddies.Estimation of the turbulent kinetic energy (TKE) budget in the interfacial zone for the two-layer case based on the parameter α, where α = (−B + ε)/P, indicated an approximate balance (α ∼ 1) between the shear production P, buoyancy flux B and the dissipation rate ε, except in the range RiB < 5 where K-H driven mixing was active.


2012 ◽  
Vol 7 (1) ◽  
pp. 53-69
Author(s):  
Vladimir Dulin ◽  
Yuriy Kozorezov ◽  
Dmitriy Markovich

The present paper reports PIV (Particle Image Velocimetry) measurements of turbulent velocity fluctuations statistics in development region of an axisymmetric free jet (Re = 28 000). To minimize measurement uncertainty, adaptive calibration, image processing and data post-processing algorithms were utilized. On the basis of theoretical analysis and direct measurements, the paper discusses effect of PIV spatial resolution on measured statistical characteristics of turbulent fluctuations. Underestimation of the second-order moments of velocity derivatives and of the turbulent kinetic energy dissipation rate due to a finite size of PIV interrogation area and finite thickness of laser sheet was analyzed from model spectra of turbulent velocity fluctuations. The results are in a good agreement with the measured experimental data. The paper also describes performance of possible ways to account for unresolved small-scale velocity fluctuations in PIV measurements of the dissipation rate. In particular, a turbulent viscosity model can be efficiently used to account for the unresolved pulsations in a free turbulent flow


1997 ◽  
Vol 334 ◽  
pp. 61-86 ◽  
Author(s):  
PAUL PICCIRILLO ◽  
CHARLES W. VAN ATTA

Experiments were carried out in a new type of stratified flow facility to study the evolution of turbulence in a mean flow possessing both uniform stable stratification and uniform mean shear.The new facility is a thermally stratified wind tunnel consisting of ten independent supply layers, each with its own blower and heaters, and is capable of producing arbitrary temperature and velocity profiles in the test section. In the experiments, four different sized turbulence-generating grids were used to study the effect of different initial conditions. All three components of the velocity were measured, along with the temperature. Root-mean-square quantities and correlations were measured, along with their corresponding power and cross-spectra.As the gradient Richardson number Ri = N2/(dU/dz)2 was increased, the downstream spatial evolution of the turbulent kinetic energy changed from increasing, to stationary, to decreasing. The stationary value of the Richardson number, Ricr, was found to be an increasing function of the dimensionless shear parameter Sq2/∈ (where S = dU/dz is the mean velocity shear, q2 is the turbulent kinetic energy, and ∈ is the viscous dissipation).The turbulence was found to be highly anisotropic, both at the small scales and at the large scales, and anisotropy was found to increase with increasing Ri. The evolution of the velocity power spectra for Ri [les ] Ricr, in which the energy of the large scales increases while the energy in the small scales decreases, suggests that the small-scale anisotropy is caused, or at least amplified, by buoyancy forces which reduce the amount of spectral energy transfer from large to small scales. For the largest values of Ri, countergradient buoyancy flux occurred for the small scales of the turbulence, an effect noted earlier in the numerical results of Holt et al. (1992), Gerz et al. (1989), and Gerz & Schumann (1991).


2016 ◽  
Vol 46 (1) ◽  
pp. 219-231 ◽  
Author(s):  
Frédéric Cyr ◽  
Hans van Haren

AbstractThe Rockall Bank area, located in the northeast Atlantic Ocean, is a region dominated by topographically trapped diurnal tides. These tides generate up- and downslope displacements that can be locally described as swashing motions on the bank. Using high spatial and time resolution of moored temperature sensors, the transition toward the upslope flow (cooling phase) is described as a rapid upslope-propagating bore, likely generated by breaking trapped internal waves. Buoyant anomalies are found during the bore propagation, likely resulting from small-scale instabilities. The imbalance between the rate of disappearance of available potential energy and the dissipation rate of turbulent kinetic energy suggests that these instabilities are growing (i.e., young) and have high mixing potential.


2013 ◽  
Vol 736 ◽  
pp. 570-593 ◽  
Author(s):  
A. Mashayek ◽  
C. P. Caulfield ◽  
W. R. Peltier

AbstractWe employ direct numerical simulation to investigate the efficiency of diapycnal mixing by shear-induced turbulence in stably stratified free shear layers for flows with bulk Richardson numbers in the range $0. 12\leq R{i}_{0} \leq 0. 2$ and Reynolds number $Re= 6000$. We show that mixing efficiency depends non-monotonically upon $R{i}_{0} $, peaking in the range 0.14–0.16, which coincides closely with the range in which both the buoyancy flux and the dissipation rate are maximum. By detailed analyses of the energetics of flow evolution and the underlying dynamics, we show that the existence of high mixing efficiency in the range $0. 14\lt R{i}_{0} \lt 0. 16$ is due to the emergence of a large number of small-scale instabilities which do not exist at lower Richardson numbers and are stabilized at high Richardson numbers. As discussed in Mashayek & Peltier (J. Fluid Mech., vol. 725, 2013, pp. 216–261), the existence of such a well-populated ‘zoo’ of secondary instabilities at intermediate Richardson numbers and the subsequent high mixing efficiency is realized only if the Reynolds number is higher than a critical value which is generally higher than that achievable in laboratory settings, as well as that which was achieved in the majority of previous numerical studies of shear-induced stratified turbulence. We furthermore show that the primary assumptions upon which the widely employed Osborn (J. Phys. Oceanogr. vol. 10, 1980, pp. 83–89) formula is based, as well as its counterparts and derivatives, which relate buoyancy flux to dissipation rate through a (constant) flux coefficient ($\Gamma $), fail at higher Richardson numbers provided that the Reynolds number is sufficiently high. Specifically, we show that the assumptions of fully developed, stationary, and isotropic turbulence all break down at high Richardson numbers. We show that the breakdown of these assumptions occurs most prominently at Richardson numbers above that corresponding to the maximum mixing efficiency, a fact that highlights the importance of the non-monotonicity of the dependence of mixing efficiency upon Richardson number, which we establish to be characteristic of stratified shear-induced turbulence. At high $R{i}_{0} $, the lifecycle of the turbulence is composed of a rapidly growing phase followed by a phase of rapid decay. Throughout the lifecycle, there is considerable exchange of energy between the small-scale turbulence and larger coherent structures which survive the various stages of flow evolution. Since shear instability is one of the most prominent mechanisms for turbulent dissipation of energy at scales below hundreds of metres and at various depths of the ocean, our results have important implications for the inference of turbulent diffusivities on the basis of microstructure measurements in the oceanic environment.


2020 ◽  
Vol 77 (7) ◽  
pp. 2311-2326
Author(s):  
Hubert Luce ◽  
Lakshmi Kantha ◽  
Hiroyuki Hashiguchi ◽  
Abhiram Doddi ◽  
Dale Lawrence ◽  
...  

AbstractUnder stably stratified conditions, the dissipation rate ε of turbulence kinetic energy (TKE) is related to the structure function parameter for temperature , through the buoyancy frequency and the so-called mixing efficiency. A similar relationship does not exist for convective turbulence. In this paper, we propose an analytical expression relating ε and in the convective boundary layer (CBL), by taking into account the effects of nonlocal heat transport under convective conditions using the Deardorff countergradient model. Measurements using unmanned aerial vehicles (UAVs) equipped with high-frequency response sensors to measure velocity and temperature fluctuations obtained during the two field campaigns conducted at Shigaraki MU observatory in June 2016 and 2017 are used to test this relationship between ε and in the CBL. The selection of CBL cases for analysis was aided by auxiliary measurements from additional sensors (mainly radars), and these are described. Comparison with earlier results in the literature suggests that the proposed relationship works, if the countergradient term γD in the Deardorff model, which is proportional to the ratio of the variances of potential temperature θ and vertical velocity w, is evaluated from in situ (airplane and UAV) observational data, but fails if evaluated from large-eddy simulation (LES) results. This appears to be caused by the tendency of the variance of θ in the upper part of the CBL and at the bottom of the entrainment zone to be underestimated by LES relative to in situ measurements from UAVs and aircraft. We discuss this anomaly and explore reasons for it.


2016 ◽  
Vol 810 ◽  
pp. 554-583 ◽  
Author(s):  
A. Venaille ◽  
L. Gostiaux ◽  
J. Sommeria

Predicting how much mixing occurs when a given amount of energy is injected into a Boussinesq fluid is a long-standing problem in stratified turbulence. The huge number of degrees of freedom involved in these processes renders extremely difficult a deterministic approach to the problem. Here we present a statistical mechanics approach yielding a prediction for a cumulative, global mixing efficiency as a function of a global Richardson number and the background buoyancy profile. Assuming random evolution through turbulent stirring, the theory predicts that the inviscid, adiabatic dynamics is attracted irreversibly towards an equilibrium state characterised by a smooth, stable buoyancy profile at a coarse-grained level, upon which are fine-scale fluctuations of velocity and buoyancy. The convergence towards a coarse-grained buoyancy profile different from the initial one corresponds to an irreversible increase of potential energy, and the efficiency of mixing is quantified as the ratio of this potential energy increase to the total energy injected into the system. The remaining part of the energy is lost into small-scale fluctuations. We show that for sufficiently large Richardson number, there is equipartition between potential and kinetic energy, provided that the background buoyancy profile is strictly monotonic. This yields a mixing efficiency of 0.25, which provides statistical mechanics support for previous predictions based on phenomenological kinematics arguments. In the general case, the cumulative, global mixing efficiency predicted by the equilibrium theory can be computed using an algorithm based on a maximum entropy production principle. It is shown in particular that the variation of mixing efficiency with the Richardson number strongly depends on the background buoyancy profile. This approach could be useful to the understanding of mixing in stratified turbulence in the limit of large Reynolds and Péclet numbers.


2019 ◽  
Vol 867 ◽  
pp. 323-333 ◽  
Author(s):  
Amrapalli Garanaik ◽  
Subhas K. Venayagamoorthy

Scaling arguments are presented to quantify the widely used diapycnal (irreversible) mixing coefficient $\unicode[STIX]{x1D6E4}=\unicode[STIX]{x1D716}_{PE}/\unicode[STIX]{x1D716}$ in stratified flows as a function of the turbulent Froude number $Fr=\unicode[STIX]{x1D716}/Nk$. Here, $N$ is the buoyancy frequency, $k$ is the turbulent kinetic energy, $\unicode[STIX]{x1D716}$ is the rate of dissipation of turbulent kinetic energy and $\unicode[STIX]{x1D716}_{PE}$ is the rate of dissipation of turbulent potential energy. We show that for $Fr\gg 1$, $\unicode[STIX]{x1D6E4}\propto Fr^{-2}$, for $Fr\sim \mathit{O}(1)$, $\unicode[STIX]{x1D6E4}\propto Fr^{-1}$ and for $Fr\ll 1$, $\unicode[STIX]{x1D6E4}\propto Fr^{0}$. These scaling results are tested using high-resolution direct numerical simulation (DNS) data from three different studies and are found to hold reasonably well across a wide range of $Fr$ that encompasses weakly stratified to strongly stratified flow conditions. Given that the $Fr$ cannot be readily computed from direct field measurements, we propose a practical approach that can be used to infer the $Fr$ from readily measurable quantities in the field. Scaling analyses show that $Fr\propto (L_{T}/L_{O})^{-2}$ for $L_{T}/L_{O}>O(1)$, $Fr\propto (L_{T}/L_{O})^{-1}$ for $L_{T}/L_{O}\sim O(1)$, and $Fr\propto (L_{T}/L_{O})^{-2/3}$ for $L_{T}/L_{O}<O(1)$, where $L_{T}$ is the Thorpe length scale and $L_{O}$ is the Ozmidov length scale. These formulations are also tested with DNS data to highlight their validity. These novel findings could prove to be a significant breakthrough not only in providing a unifying (and practically useful) parameterization for the mixing efficiency in stably stratified turbulence but also for inferring the dynamic state of turbulence in geophysical flows.


2017 ◽  
Vol 832 ◽  
Author(s):  
Dan Lucas ◽  
C. P. Caulfield

We consider turbulence driven by a large-scale horizontal shear in Kolmogorov flow (i.e. with sinusoidal body forcing) and a background linear stable stratification with buoyancy frequency $N_{B}^{2}$ imposed in the third, vertical direction in a fluid with kinematic viscosity $\unicode[STIX]{x1D708}$. This flow is known to be organised into layers by nonlinear unstable steady states, which incline the background shear in the vertical and can be demonstrated to be the finite-amplitude saturation of a sequence of instabilities, originally from the laminar state. Here, we investigate the next order of motions in this system, i.e. the time-dependent mechanisms by which the density field is irreversibly mixed. This investigation is achieved using ‘recurrent flow analysis’. We identify (unstable) periodic orbits, which are embedded in the turbulent attractor, and use these orbits as proxies for the chaotic flow. We find that the time average of an appropriate measure of the ‘mixing efficiency’ of the flow $\mathscr{E}=\unicode[STIX]{x1D712}/(\unicode[STIX]{x1D712}+{\mathcal{D}})$ (where ${\mathcal{D}}$ is the volume-averaged kinetic energy dissipation rate and $\unicode[STIX]{x1D712}$ is the volume-averaged density variance dissipation rate) varies non-monotonically with the time-averaged buoyancy Reynolds numbers $\overline{Re}_{B}=\overline{{\mathcal{D}}}/(\unicode[STIX]{x1D708}N_{B}^{2})$, and is bounded above by $1/6$, consistently with the classical model of Osborn (J. Phys. Oceanogr., vol. 10 (1), 1980, pp. 83–89). There are qualitatively different physical properties between the unstable orbits that have lower irreversible mixing efficiency at low $\overline{Re}_{B}\sim O(1)$ and those with nearly optimal $\mathscr{E}\lesssim 1/6$ at intermediate $\overline{Re}_{B}\sim 10$. The weaker orbits, inevitably embedded in more strongly stratified flow, are characterised by straining or ‘scouring’ motions, while the more efficient orbits have clear overturning dynamics in more weakly stratified, and apparently shear-unstable flow.


Sign in / Sign up

Export Citation Format

Share Document