Dynamics and motion of a gas bubble in a viscoplastic medium under acoustic excitation

2019 ◽  
Vol 865 ◽  
pp. 381-413 ◽  
Author(s):  
G. Karapetsas ◽  
D. Photeinos ◽  
Y. Dimakopoulos ◽  
J. Tsamopoulos

We investigate the dynamics of the buoyancy-driven rise of a bubble inside a viscoplastic material when it is subjected to an acoustic pressure field. To this end, we develop a simplified model based on the Lagrangian formalism assuming a pulsating bubble with a spherical shape. Moreover, to account for the effects of a deformable bubble, we also perform detailed two-dimensional axisymmetric simulations. Qualitative agreement is found between the simplified approach and the detailed numerical simulations. Our results reveal that the acoustic excitation enhances the mobility of the bubble, by increasing the size of the yielded region that surrounds the bubble, thereby decreasing the effective viscosity of the liquid and accelerating the motion of the bubble. This effect is significantly more pronounced at the resonance frequency, and it is shown that bubble motion takes place even for Bingham numbers (Bn) that can be orders of magnitude higher than the critical Bn for bubble entrapment in the case of a static pressure field.

Proceedings ◽  
2020 ◽  
Vol 64 (1) ◽  
pp. 40
Author(s):  
Marc Röthlisberger ◽  
Marcel Schuck ◽  
Laurenz Kulmer ◽  
Johann W. Kolar

Acoustic levitation forces can be used to manipulate small objects and liquid without mechanical contact or contamination. To use acoustic levitation for contactless robotic grippers, automated insertion of objects into the acoustic pressure field is necessary. This work presents analytical models based on which concepts for the controlled insertion of objects are developed. Two prototypes of acoustic grippers are implemented and used to experimentally verify the lifting of objects into the acoustic field. Using standing acoustic waves and by dynamically adjusting the acoustic power, the lifting of high-density objects (>7 g/cm3) from acoustically transparent surfaces is demonstrated. Moreover, a combination of different acoustic traps is used to lift lower-density objects from acoustically reflective surfaces. The provided results open up new possibilities for the implementation of acoustic levitation in robotic grippers, which have the potential to be used in a variety of industrial applications.


2021 ◽  
Author(s):  
Papa Aye N. Aye-Addo ◽  
Guillermo Paniagua ◽  
David G. Cuadrado ◽  
Lakshya Bhatnagar ◽  
Antonio Castillo Sauca ◽  
...  

Abstract Optical measurements based on fast response Pressure Sensitive Paint (PSP) provide enhanced spatial resolution of the pressure field. This paper presents laser lifetime PSP at 20 kHz, with precise calibrations, and results from a demonstration in an annular vane cascade. The laser lifetime PSP methodology is first evaluated in a linear wind tunnel with a converging-diverging nozzle followed by a wavy surface. This test section is fully optically accessible with maximum modularity. A data reduction procedure is proposed for the PSP calibration, and optimal pixel binning is selected to reduce the uncertainty. In the annular test section, laser lifetime PSP was used to measure the time-averaged static pressure field on a section of the suction surface of a high-pressure turbine vane. Tests were performed at engine representative conditions in the Purdue Big Rig for Annular Stationary Turbine Analysis module at the Purdue Experimental Turbine Aerothermal Lab. The 2-D pressure results showed a gradual increase of pressure in the spanwise and flow directions, corroborated with local static pressure taps and computational results. The variation in PSP thickness was measured as a contribution to the uncertainty. The discrete Fourier transform of the unsteady pressure signal showed increased frequency content in wind-on conditions compared to wind-off conditions at the mid-span and 30% span. Compared to the mid-span region, the hub end wall region had an increase in frequencies and pressure amplitude. This result was anticipated given the expected presence of secondary flow structures in the near hub region.


2021 ◽  
Vol 143 (3) ◽  
Author(s):  
Tapish Agarwal ◽  
Maximilian Stratmann ◽  
Simon Julius ◽  
Beni Cukurel

Abstract The requirements of improved heat transfer performance on turbine surfaces and internal cooling passages drive the research into exploring new methods for efficiency enhancements. The addition of ribbed structures inside the cooling ducts has proven to be most practical, which increases heat transfer from surfaces to fluid flow at the cost of some pressure loss. Many active and passive methods have been proposed for enhancing the heat transfer, where acoustic excitation has been recently shown to be an effective option. Moreover, the existing pressure fluctuations due to rotor–stator interactions can also be utilized as a source of excitation. However, the sensitivity of the phenomenon to various flow and geometric parameters has not been fully characterized. The present study investigates various aspects of convective heat transfer enhancement and turbulent flow modulation caused by acoustic forcing on separating and reattaching flow over isolated rib obstacles. A parametric study is conducted; rib obstacles of various sizes and shapes (including rectangular, squared, triangular, and semi-cylindrical) are installed in a low-speed, fully turbulent wind tunnel, and measurements are taken at different velocities and excitation frequencies. Static pressure and spatially resolved surface temperature measurements are performed to quantify the ramifications of acoustic excitation on the wetted wall. Within the favorable Strouhal number range of 0.1–0.25, an optimum value of 0.16 is observed. It is shown that triangular ribs are more prone to acoustic heat transfer enhancement than rectangular or cylindrical perturbations. A linear correlation between static pressure recovery rate and acoustic heat transfer enhancement is observed, which is invariant to change in size/shape of the rib as well as flow and excitation parameters.


2005 ◽  
Vol 12 (2) ◽  
pp. 337-348
Author(s):  
David Natroshvili ◽  
Guram Sadunishvili ◽  
Irine Sigua

Abstract Three-dimensional fluid-solid interaction problems with regard for thermal stresses are considered. An elastic structure is assumed to be a bounded homogeneous isotropic body occupying a domain , where the thermoelastic four dimensional field is defined, while in the unbounded exterior domain there is defined the scalar (acoustic pressure) field. These two fields satisfy the differential equations of steady state oscillations in the corresponding domains along with the transmission conditions of special type on the interface ∂Ω±. We show that uniqueness of solutions strongly depends on the geometry of the boundary ∂Ω±. In particular, we prove that for the corresponding homogeneous transmission problem for a ball there exist infinitely many exceptional values of the oscillation parameter (Jones eigenfrequencies). The corresponding eigenvectors (Jones modes) are written explicitly. On the other hand, we show that if the boundary surface ∂Ω± contains two flat, non-parallel sub-manifolds then there are no Jones eigenfrequencies for such domains.


Author(s):  
Tapish Agarwal ◽  
Maximilian Stratmann ◽  
Simon Julius ◽  
Beni Cukurel

Abstract The requirements of improved heat transfer performance on turbine surfaces and internal cooling passages drive the research into exploring new methods for efficiency enhancements. Addition of ribbed structures inside the cooling ducts has proven to be most practical, which increases heat transfer from surfaces to fluid flow at the cost of some pressure loss. Many active and passive methods have been proposed for enhancing the heat transfer, where acoustic excitation has been recently shown to be an effective option. Moreover, the existing pressure fluctuations due to rotor-stator interactions can also be utilized as a source of excitation. However, the sensitivity of the phenomenon to various flow and geometric parameters has not been fully characterized. The present study investigates various aspects of convective heat transfer enhancement and turbulent flow modulation caused by acoustic forcing on separating and reattaching flow over isolated rib obstacles. A parametric study is conducted; rib obstacles of various sizes and shapes (including rectangular, squared, triangular, semi-cylindrical, etc.) are installed in a low-speed, fully turbulent wind tunnel and measurements are taken at different velocities and excitation frequencies. Static pressure and spatially resolved surface temperature measurements are performed to quantify the ramifications of acoustic excitation on the wetted wall. Within the favorable Strouhal number range of 0.1–0.25, an optimum value of 0.16 is observed. It is shown that triangular ribs are more prone to acoustic heat transfer enhancement than rectangular or cylindrical perturbations. A linear correlation between static pressure recovery rate and acoustic heat transfer enhancement is observed, which is invariant to change in size/shape of the rib as well as flow and excitation parameters.


2011 ◽  
Vol 57 (3) ◽  
pp. 411-419 ◽  
Author(s):  
Sina Sodagar ◽  
Farhang Honarvar ◽  
Amin Yaghootian ◽  
Anthony N. Sinclair

2003 ◽  
Author(s):  
Abbas N. Moghaddam ◽  
Nasser Fatouraee ◽  
Eric T. Choi ◽  
Amir A. Amini

Author(s):  
Michael W. Sracic ◽  
Jordan D. Petrie ◽  
Henry A. Moroder ◽  
Ryan T. Koniecko ◽  
Andrew R. Abramczyk ◽  
...  

Acoustic levitation is an advantageous particle positioning mechanism currently employed for applications of x-ray spectroscopy and micro-material manufacturing[1], [2]. By levitating a particle using only acoustic pressure waves, one eliminates the need for a container or other physical structure which may contaminate the specimen. Unfortunately, the pressure field generated by a standing acoustic wave is susceptible to periodic instabilities, and a particle that is levitated in this field tends to vibrate. The amplitude of the vibration is largest in the directions that are orthogonal to the axis in which the acoustic wave is generated. Therefore, by generating additional acoustic waves in each orthogonal axis, the vibration amplitude of the levitated particle is significantly reduced. The authors have shown this phenomenon to be true in a previous study[3]. In this paper, the authors explore the details of the pressure field that is generated with the device. A single degree-of-freedom relationship is developed between the acoustic field pressure, the location of the levitated particle, and the mechanical vibration needed to produce levitation. In order to levitate a 100 micrometer diameter water droplet at 55 kilohertz, the calculations suggest that the transducer must achieve an average surface vibration amplitude of at least 6.43 micrometers. This mechanical vibration must produce a root means-squared pressure amplitude of 933 Pascal. Under these conditions, the particle will levitate approximately 0.4 millimeters below a zero pressure node. To validate the use of the single degree of freedom relationships and to explore the acoustic field for one, two, and three-axis levitation, the authors designed and prototyped an acoustic levitator capable of generating standing waves in three orthogonal directions. Using a simple electrical control circuit, the acoustic wave transducers of each axis can be turned on individually or simultaneously. An experiment was developed to measure the pressure of the acoustic field using a microphone. Preliminary pressure magnitude results were measured for one-axis levitation along the center of the vertical axis of the levitator. The measurements suggest that the theoretical development provides a valid first approximation for the pressure magnitude and required mechanical vibration amplitude.


2012 ◽  
Author(s):  
Francisco I. Valentin ◽  
Silvina Cancelos

While the Bjerknes force is not the only force experienced by a bubble subjected to an acoustic field; studies of bubble translation in non-flowing fluid have identified Bjerknes force as being the most influential. Therefore, Bjerknes force can be used to trap bubbles in predefined locations of maximum and minimum absolute pressure. Specifically challenging is to determine these locations in complex geometries because direct measurement of the acoustic pressure for the whole system is generally not possible. The objective of this research is to numerically predict Bjerknes force effect on bubble migration and accumulation in a complex 3D geometry that includes piezoelectric materials, elastic materials and a fluid media. A numerical solution of the acoustic pressure field was obtained for this geometry, valid in the range of small pressure oscillations. Additionally, using the linearized Rayleigh-Plesset equation, which gives the volumetric oscillations of a bubble subjected to an acoustic field, the Bjerknes force was numerically computed. By knowing the Bjerknes force, a bubble migration pattern upon entering the system was predicted. A CMOS high speed camera was used to experimentally monitor bubble multimode excitation and bubble response to a stationary pressure field validating our numerical results. Results are presented for experiments conducted for a 1mm bubble diameter with acoustic fields ranging from 7 to 10 kHz which correspond to values of the structure and/or the bubble’s resonant frequency.


Sign in / Sign up

Export Citation Format

Share Document