A conjecture on the least stable mode for the energy stability of plane parallel flows

2019 ◽  
Vol 881 ◽  
pp. 794-814 ◽  
Author(s):  
Xiangming Xiong ◽  
Zhi-Min Chen

In the energy stability theory, the critical Reynolds number is usually defined as the minimum of the first positive eigenvalue $R_{1}$ of an eigenvalue equation for all wavenumber pairs $(\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD})$, where $\unicode[STIX]{x1D6FC}$ and $\unicode[STIX]{x1D6FD}$ are the streamwise and spanwise wavenumbers of the normal mode. We prove that $(\cos \unicode[STIX]{x1D703}\pm 1)R_{1}$ are decreasing functions of $\unicode[STIX]{x1D703}=\arctan (\unicode[STIX]{x1D6FD}/\unicode[STIX]{x1D6FC})$ for the parallel flows between no-slip or slip parallel plates with or without variations in temperature. Numerical results inspire us to conjecture that $R_{1}$ is also a decreasing function of $\unicode[STIX]{x1D703}$ for the parallel shear flows under the no-slip boundary condition and without variations in temperature. If the conjecture is correct, the least stable normal modes for the energy stability will be streamwise vortices for these base flows.

2008 ◽  
Vol 613 ◽  
pp. 125-134 ◽  
Author(s):  
MARTIN Z. BAZANT ◽  
OLGA I. VINOGRADOVA

We describe a tensorial generalization of the Navier slip boundary condition and illustrate its use in solving for flows around anisotropic textured surfaces. Tensorial slip can be derived from molecular or microstructural theories or simply postulated as a constitutive relation, subject to certain general constraints on the interfacial mobility. The power of the tensor formalism is to capture complicated effects of surface anisotropy, while preserving a simple fluid domain. This is demonstrated by exact solutions for laminar shear flow and pressure-driven flow between parallel plates of arbitrary and different textures. From such solutions, the effects of rotating a texture follow from simple matrix algebra. Our results may be useful for extracting local slip tensors from global measurements, such as the permeability of a textured channel or the force required to move a patterned surface, in experiments or simulations.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Inayat Ullah ◽  
M. T. Rahim ◽  
Hamid Khan

In the present work, in the presence of magnetic field and with slip boundary condition, squeezing flow of a Newtonian fluid in a porous medium between two large parallel plates is investigated. The governing equations are transformed to a single nonlinear boundary value problem. Daftardar Jafari Method (DJM) is used to solve the problem in order to obtain the velocity profile of the fluid. By using residual of the problem, the validity of solution is established. The velocity profile is argued through graphs for various values of parameters.


2020 ◽  
Vol 75 (7) ◽  
pp. 649-655
Author(s):  
Juan Song ◽  
Shaowei Wang ◽  
Moli Zhao ◽  
Ning Li

AbstractConsidering the slip boundary condition, the rotating electro-osmotic flow of a third grade fluid in a channel formed by two parallel plates is investigated in the present study. The charge distribution is treated with the Debye–Hückel approximation analytically. Based on the finite difference method, the velocity profile for rotating electro-osmotic flow of third grade fluid is obtained numerically. It is shown that the non-Newtonian parameter of third grade fluid and the velocity slip factor play the important roles for the rotating electro-osmotic flow. The increasing non-Newtonian parameter slows down the flow and decreases the velocity magnitude, and the increasing slip parameter β has the similar influence on the velocity profile. Furthermore, the effect of the inclusion of third grade on the velocity profile is more conspicuous in the area near the walls.


1969 ◽  
Vol 66 (1) ◽  
pp. 189-196 ◽  
Author(s):  
M. M. R. Williams

AbstractThe flow of a rarefied gas between parallel plates has been studied via the linearized Boltzmann transport equation. Using a general boundary condition, which includes an arbitrary ratio of specular to diffuse reflection from the wall, we have derived an integral equation for the mass flow velocity. The integral equation is solved by using a replication property of the kernel and application of the method of Muskelishvili.The total volumetric flow rate is obtained and a slip boundary condition is deduced for use with the hydrodynamic equations.Certain aspects of the eigenvalue spectrum associated with the Boltzmann equation are discussed.


2012 ◽  
Vol 707 ◽  
pp. 482-495 ◽  
Author(s):  
Ofer Manor ◽  
Leslie Y. Yeo ◽  
James R. Friend

AbstractThe classical Schlichting boundary layer theory is extended to account for the excitation of generalized surface waves in the frequency and velocity amplitude range commonly used in microfluidic applications, including Rayleigh and Sezawa surface waves and Lamb, flexural and surface-skimming bulk waves. These waves possess longitudinal and transverse displacements of similar magnitude along the boundary, often spatiotemporally out of phase, giving rise to a periodic flow shown to consist of a superposition of classical Schlichting streaming and uniaxial flow that have no net influence on the flow over a long period of time. Correcting the velocity field for weak but significant inertial effects results in a non-vanishing steady component, a drift flow, itself sensitive to both the amplitude and phase (prograde or retrograde) of the surface acoustic wave propagating along the boundary. We validate the proposed theory with experimental observations of colloidal pattern assembly in microchannels filled with dilute particle suspensions to show the complexity of the boundary layer, and suggest an asymptotic slip boundary condition for bulk flow in microfluidic applications that are actuated by surface waves.


Sign in / Sign up

Export Citation Format

Share Document