scholarly journals On state instability of the bi-stable flow past a notchback bluff body

2021 ◽  
Vol 931 ◽  
Author(s):  
Kan He ◽  
Guglielmo Minelli ◽  
Xinchao Su ◽  
Guangjun Gao ◽  
Siniša Krajnović

The wake of a notchback Ahmed body presenting a bi-stable nature is investigated by performing wind tunnel experiments and large-eddy simulations. Attention is confined to the Reynolds number ( $Re$ ) influence on the wake state instability within $5\times 10^{4}\leq Re \leq 25\times 10^{4}$ . Experimental observations suggest a wake bi-stability with low-frequency switches under low $Re$ . The wake becomes ‘tri-stable’ with the increase of $Re$ with the introduction of a new symmetric state. The higher presence of the symmetric state can be considered as a symmetrization of the wake bi-stability with an increasing $Re$ . The wake symmetry under high $Re$ attributed to the highly frequent switches of the wake is extremely sensitive to small yaw angles, showing the feature of bi-stable flows. The wake asymmetry is confirmed in numerical simulations with both low and high $Re$ . The wake asymmetries are indicated by the wake separation, the reattachment and the wake dynamics identified by the proper orthogonal decomposition. However, the turbulence level is found to be significantly higher with a higher $Re$ . This leads to a higher possibility to break the asymmetric state, resulting in highly frequent switches showing symmetry.

Author(s):  
Aaron F. Shinn ◽  
S. Pratap Vanka

Large Eddy Simulations were performed to study the effect of a micro-ramp on an inclined turbulent jet interacting with a cross-flow in a film-cooling configuration. The micro-ramp vortex generator is placed downstream of the film-cooling jet. Changes in vortex structure and film-cooling effectiveness are evaluated and the genesis of the counter-rotating vortex pair in the jet is discussed. Results are reported with the jet modeled using a plenum/pipe configuration. This configuration was designed based on previous wind tunnel experiments at NASA Glenn Research Center, and the present results are meant to supplement those experiments. It is found that the micro-ramp improves film-cooling effectiveness by generating near-wall counter-rotating vortices which help entrain coolant from the jet and transport it to the surface. The pair of vortices generated by the micro-ramp are of opposite sense to the vortex pair embedded in the jet.


2020 ◽  
pp. 1-12
Author(s):  
Adam L. Comer ◽  
Cheng Huang ◽  
Swanand Sardeshmukh ◽  
Brent A. Rankin ◽  
Matthew E. Harvazinski ◽  
...  

2005 ◽  
Vol 127 (5) ◽  
pp. 486-498 ◽  
Author(s):  
Mayank Tyagi ◽  
Sumanta Acharya

Large eddy simulations are performed in a periodic domain of a rotating square duct with normal rib turbulators. Both the Coriolis force as well as the centrifugal buoyancy forces are included in this study. A direct approach is presented for the unsteady calculation of the nondimensional temperature field in the periodic domain. The calculations are performed at a Reynolds number (Re) of 12,500, a rotation number (Ro) of 0.12, and an inlet coolant-to-wall density ratio Δρ/ρ of 0.13. The predicted time and space-averaged Nusselt numbers are shown to compare satisfactorily with the published experimental data. Time sequences of the vorticity components and the temperature fields are presented to understand the flow physics and the unsteady heat transfer behavior. Large scale coherent structures are seen to play an important role in the mixing and heat transfer. The temperature field appears to contain a low frequency mode that extends beyond a single inter-rib geometric module, and indicates the necessity of using at least two inter-rib modules for streamwise periodicity to be satisfied. Proper orthogonal decomposition (POD) of the flowfield indicates a low dimensionality of this system with almost 99% of turbulent energy in the first 80 POD modes.


Author(s):  
Mayank Tyagi ◽  
Sumanta Acharya

Large eddy simulations are performed in a periodic domain of a rotating square duct with normal rib turbulators. Both the Coriolis force as well as the centrifugal buoyancy force are included in this study. A direct approach is presented for the unsteady calculation of the non-dimensional temperature field in the periodic domain. The calculations are performed at a Reynolds number (Re) of 12, 500, a Rotation number (Ro) of 0.12 and an inlet coolant-to-wall density ratio (Δρ/ρ) of 0.13. The time-averaged Nusselt numbers compare satisfactorily with the data of Wagner et al. (J. Turbomachinery, Vol. 114, pp. 847–857). Time-sequences of the vorticity components and the temperature fields are presented to understand the flow physics and the unsteady heat transfer processes. Large scale coherent structures are seen to play an important role in the mixing and heat transfer. The temperature field appears to contain a low frequency mode that extends beyond a single inter-rib geometric module, and indicates the necessity of using at least two inter-rib modules for streamwise periodicity to be satisfied. Proper orthogonal decomposition (POD) of 200 snapshots indicates a low dimensionality of this system with almost 99% of turbulent energy in the first 80 POD modes.


2010 ◽  
Vol 31 (5) ◽  
pp. 754-766 ◽  
Author(s):  
S. Ayache ◽  
J.R. Dawson ◽  
A. Triantafyllidis ◽  
R. Balachandran ◽  
E. Mastorakos

Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3624 ◽  
Author(s):  
Zhenqing Liu ◽  
Yiran Hu ◽  
Yichen Fan ◽  
Wei Wang ◽  
Qingsong Zhou

The flow fields over a simplified 3D hill covered by vegetation have been examined by many researchers. However, there is scarce research giving the three-dimensional characteristics of the flow fields over a rough 3D hill. In this study, large eddy simulations were performed to examine the coherent turbulence structures of the flow fields over a vegetation-covered 3D hill. The numerical simulations were validated by the comparison with the wind-tunnel experiments. Besides, the flow fields were systematically investigated, including the examinations of the mean velocities and root means square of the fluctuating velocities. The distributions of the parameters are shown in a three-dimensional way, i.e., plotting the parameters on a series of spanwise slices. Some noteworthy three-dimensional features were found, and the mechanisms were further revealed by assessing the turbulence kinetic energy budget and the spectrum energy. Subsequently, the instantaneous flow fields were illustrated, from which the coherent turbulence structures were clearly identified. Ejection-sweep motion was intensified just behind the hill crest, leading to a spanwise rotation. A group of vertical rotations were generated by the shedding of the vortex from the lateral sides of the hill.


Author(s):  
Mohamed Abdelhady ◽  
David H. Wood

Abstract Stranded overhead conductor cables are used to transfer electric power, often over large distances. Conductor geometry, as well as environmental conditions, affect the power carrying capacity. This paper studies the flow dynamics and heat transfer for one stranded conductor geometry in air at Reynolds number of 1,000, determined using dynamic Smagorinsky Large Eddy Simulations. Proper Orthogonal Decomposition was used to identify coherent structures. In comparison to a smooth circular cylinder, the conductor strands noticeably affect the flow dynamics and heat transfer, locally and globally.


Sign in / Sign up

Export Citation Format

Share Document