Instability of the attachment line boundary layer in a supersonic swept flow

2021 ◽  
Vol 933 ◽  
Author(s):  
Alexander V. Fedorov ◽  
Ivan V. Egorov

Theoretical analysis of attachment-line instabilities is performed for supersonic swept flows using the compressible Hiemenz approximation for the mean flow and the successive approximation procedures for disturbances. The theoretical model captures the dominant attachment-line modes in wide ranges of the sweep Mach number ${M_e}$ and the wall temperature ratio. It is shown that these modes behave similar to the first and second Mack modes in the boundary layer flow. This similarity allows us to extrapolate the knowledge gained for Mack modes to the attachment-line instabilities. In particular, we find that at sufficiently large ${M_e}$ , the dominant attachment-line instability is associated with the synchronisation of slow and fast modes of acoustic nature. Point-by-point comparisons of the theoretical predictions with the experiments of Gaillard et al. (Exp. Fluids, vol. 26, 1999, pp. 169–176) demonstrate that at ${M_e} > 4$ , the theory captures a significant drop of the transition onset Reynolds number, which is below the contamination criterion of Poll $({R_\mathrm{\ast }} = 250)$ at ${M_e} > 6$ . This contradicts the generally accepted assumption that the attachment-line flow is stable for ${R_\mathrm{\ast }} \le 250$ . The theoretical critical Reynolds numbers lie well below the experimental transition-onset Reynolds numbers. Stability computations using the Navier–Stokes mean flow and accounting for the leading-edge curvature effect do not eliminate this discrepancy. Most likely, in the experiments of Gaillard et al., we face with an unknown effect that does not fit to the concept of transition arising from linear instability.

1985 ◽  
Vol 160 ◽  
pp. 281-295 ◽  
Author(s):  
F. A. Milinazzo ◽  
P. G. Saffman

Computations of two-dimensional solutions of the Navier–Stokes equations are carried out for finite-amplitude waves on steady unidirectional flow. Several cases are considered. The numerical method employs pseudospectral techniques in the streamwise direction and finite differences on a stretched grid in the transverse direction, with matching to asymptotic solutions when unbounded. Earlier results for Poiseuille flow in a channel are re-obtained, except that attention is drawn to the dependence of the minimum Reynolds number on the physical constraint of constant flux or constant pressure gradient. Attempts to calculate waves in Couette flow by continuation in the velocity of a channel wall fail. The asymptotic suction boundary layer is shown to possess finite-amplitude waves at Reynolds numbers orders of magnitude less than the critical Reynolds number for linear instability. Waves in the Blasius boundary layer and unsteady Rayleigh profile are calculated by employing the artifice of adding a body force to cancel the spatial or temporal growth. The results are verified by comparison with perturbation analysis in the vicinity of the linear-instability critical Reynolds numbers.


2014 ◽  
Vol 761 ◽  
pp. 62-104 ◽  
Author(s):  
Joris C. G. Verschaeve ◽  
Geir K. Pedersen

AbstractIn the present treatise, the stability of the boundary layer under solitary waves is analysed by means of the parabolized stability equation. We investigate both surface solitary waves and internal solitary waves. The main result is that the stability of the flow is not of parametric nature as has been assumed in the literature so far. Not only does linear stability analysis highlight this misunderstanding, it also gives an explanation why Sumer et al. (J. Fluid Mech., vol. 646, 2010, pp. 207–231), Vittori & Blondeaux (Coastal Engng, vol. 58, 2011, pp. 206–213) and Ozdemir et al. (J. Fluid Mech., vol. 731, 2013, pp. 545–578) each obtained different critical Reynolds numbers in their experiments and simulations. We find that linear instability is possible in the acceleration region of the flow, leading to the question of how this relates to the observation of transition in the acceleration region in the experiments by Sumer et al. or to the conjecture of a nonlinear instability mechanism in this region by Ozdemir et al. The key concept for assessment of instabilities is the integrated amplification which has not been employed for this kind of flow before. In addition, the present analysis is not based on a uniformization of the flow but instead uses a fully nonlinear description including non-parallel effects, weakly or fully. This allows for an analysis of the sensitivity with respect to these effects. Thanks to this thorough analysis, quantitative agreement between model results and direct numerical simulation has been obtained for the problem in question. The use of a high-order accurate Navier–Stokes solver is primordial in order to obtain agreement for the accumulated amplifications of the Tollmien–Schlichting waves as revealed in this analysis. An elaborate discussion on the effects of amplitudes and water depths on the stability of the flow is presented.


1967 ◽  
Vol 18 (2) ◽  
pp. 165-184 ◽  
Author(s):  
M. Gaster

SummaryFlight tests on the Handley Page suction wing showed that turbulence at the wing root can propagate along the leading edge and cause the whole flow to be turbulent. The flow on the attachment line of a swept wing was studied in a low speed wind tunnel with particular reference to this problem of turbulent contamination.The critical Reynolds number, RθL, of the attachment-line boundary layer for the spanwise spread of turbulence was found to be about 100 for sweep angles in the range 40°–60°. A device was developed to act as a barrier to the turbulent root flow so that a clean laminar flow could exist outboard. This device was shown to be effective up to an Rθ of at least 170, so that experiments were possible on a laminar boundary layer at Reynolds numbers above the lower critical value. A spark was used to introduce spots of turbulence into the attachment-line boundary layer and the propagation speeds of the leading and trailing edges were measured. The spots expanded, the leading edge moving faster than the trailing edge, at high Reynolds numbers, and contracted at low values.The behaviour of Tollmien-Schlichting waves was also investigated by exciting the flow with sound emanating from a small hole on the attachment line. Measurements of the perturbation phase and amplitude were made downstream of the source and, although accurate values of wave length and propagation speed could be found, difficulties were experienced in evaluating the amplification ratio. Nevertheless, all small disturbances decayed at a sufficient distance from the source hole up to the highest available Reynolds number of 170.


2021 ◽  
Vol 1201 (1) ◽  
pp. 012013
Author(s):  
G Yin ◽  
Y Zhang ◽  
M C Ong

Abstract Two-dimensional (2D) numerical simulations of flow over wall-mounted rectangular and trapezoidal ribs subjected to a turbulent boundary layer flow with the normalized boundary layer thickness of δ/D = 0.73,1.96,2.52 (D is the height of the ribs) have been carried out by using the Reynolds-averaged Navier-Stokes (RANS) equations combined with the k – ω SST (Shear Stress Transport) turbulence model. The angles of the two side slopes of trapezoidal rib varies from 0° to 60°. The Reynolds number based on the free-stream velocity U ∞ and D are 1 × 106 and 2 × 106. The results obtained from the present numerical simulations are in good agreement with the published experimental data. Furthermore, the effects of the angle of the two side slopes of the trapezoidal ribs, the Reynolds number and the boundary layer thickness on the hydrodynamic quantities are discussed.


1997 ◽  
Vol 333 ◽  
pp. 125-137 ◽  
Author(s):  
RAY-SING LIN ◽  
MUJEEB R. MALIK

The stability of the incompressible attachment-line boundary layer has been studied by Hall, Malik & Poll (1984) and more recently by Lin & Malik (1996). These studies, however, ignored the effect of leading-edge curvature. In this paper, we investigate this effect. The second-order boundary-layer theory is used to account for the curvature effects on the mean flow and then a two-dimensional eigenvalue approach is applied to solve the linear stability equations which fully account for the effects of non-parallelism and leading-edge curvature. The results show that the leading-edge curvature has a stabilizing influence on the attachment-line boundary layer and that the inclusion of curvature in both the mean-flow and stability equations contributes to this stabilizing effect. The effect of curvature can be characterized by the Reynolds number Ra (based on the leading-edge radius). For Ra = 104, the critical Reynolds number R (based on the attachment-line boundary-layer length scale, see §2.2) for the onset of instability is about 637; however, when Ra increases to about 106 the critical Reynolds number approaches the value obtained earlier without curvature effect.


2017 ◽  
Vol 827 ◽  
pp. 155-193 ◽  
Author(s):  
Konstantinos Tsigklifis ◽  
Anthony D. Lucey

We study the fluid–structure interaction (FSI) of a compliant panel with developing Blasius boundary-layer flow. The linearised Navier–Stokes equations in velocity–vorticity form are solved using a Helmholtz decomposition coupled with the dynamics of a plate-spring compliant panel couched in finite-difference form. The FSI system is written as an eigenvalue problem and the various flow- and wall-based instabilities are analysed. It is shown that global temporal instability can occur through the interaction of travelling wave flutter (TWF) with a structural mode or as a resonance between Tollmien–Schlichting wave (TSW) instability and discrete structural modes of the compliant panel. The former is independent of compliant panel length and upstream inflow disturbances while the specific behaviour arising from the latter phenomenon is dependent upon the frequency of a disturbance introduced upstream of the compliant panel. The inclusion of axial displacements in the wall model does not lead to any further global instabilities. The dependence of instability-onset Reynolds numbers with structural stiffness and damping for the global modes is quantified. It is also shown that the TWF-based global instability is stabilised as the boundary layer progresses downstream while the TSW-based global instability exhibits discrete resonance-type behaviour as Reynolds number increases. At sufficiently high Reynolds numbers, a globally unstable divergence instability is identified when the wavelength of its wall-based mode is longer than that of the least stable TSW mode. Finally, a non-modal analysis reveals a high level of transient growth when the flow interacts with a compliant panel which has structural properties capable of reducing TSW growth but which is prone to global instability through wall-based modes.


1989 ◽  
Vol 200 ◽  
pp. 149-171 ◽  
Author(s):  
H. Higuchi ◽  
H. J. Kim ◽  
C. Farell

An experimental investigation of the flow around smooth circular cylinders in the Reynolds number range 0.8 × 105 < Re < 2 × 105 is presented. Measured quantities include spectra, spanwise correlations and cross correlations of cylinder pressures and wake-velocity fluctuations, and low-frequency boundary-layer flow direction reversals near separation. The flow motion in the critical range is found to be characterized by intermittent, symmetric boundary-layer reattachments, occurring in cells with a well-defined spanwise structure, accompanying a significant decrease in drag coefficient and a weakening of the vortex shedding.


Author(s):  
Elmer Gennaro ◽  
Daniel Rodriguez Alvarez ◽  
Marcello Medeiros ◽  
Vassilios Theofilis

1991 ◽  
Vol 113 (4) ◽  
pp. 608-616 ◽  
Author(s):  
H. M. Jang ◽  
J. A. Ekaterinaris ◽  
M. F. Platzer ◽  
T. Cebeci

Two methods are described for calculating pressure distributions and boundary layers on blades subjected to low Reynolds numbers and ramp-type motion. The first is based on an interactive scheme in which the inviscid flow is computed by a panel method and the boundary layer flow by an inverse method that makes use of the Hilbert integral to couple the solutions of the inviscid and viscous flow equations. The second method is based on the solution of the compressible Navier–Stokes equations with an embedded grid technique that permits accurate calculation of boundary layer flows. Studies for the Eppler-387 and NACA-0012 airfoils indicate that both methods can be used to calculate the behavior of unsteady blade boundary layers at low Reynolds numbers provided that the location of transition is computed with the en method and the transitional region is modeled properly.


Sign in / Sign up

Export Citation Format

Share Document