scholarly journals Critical transition to a non-chaotic regime in isotropic turbulence

2021 ◽  
Vol 930 ◽  
Author(s):  
Daniel Clark ◽  
Andres Armua ◽  
Richard D.J.G. Ho ◽  
Arjun Berera

We study the properties of homogeneous and isotropic turbulence in higher spatial dimensions through the lens of chaos and predictability using numerical simulations. We employ both direct numerical simulations and numerical calculations of the eddy damped quasi-normal Markovian closure approximation. Our closure results show a remarkable transition to a non-chaotic regime above the critical dimension, $d_c$ , which is found to be approximately 5.88. We relate these results to the properties of the energy cascade as a function of spatial dimension in the context of the idea of a critical dimension for turbulence where Kolmogorov's 1941 theory becomes exact.

2017 ◽  
Vol 813 ◽  
pp. 205-249 ◽  
Author(s):  
Rohit Dhariwal ◽  
Sarma L. Rani ◽  
Donald L. Koch

The relative velocities and positions of monodisperse high-inertia particle pairs in isotropic turbulence are studied using direct numerical simulations (DNS), as well as Langevin simulations (LS) based on a probability density function (PDF) kinetic model for pair relative motion. In a prior study (Rani et al., J. Fluid Mech., vol. 756, 2014, pp. 870–902), the authors developed a stochastic theory that involved deriving closures in the limit of high Stokes number for the diffusivity tensor in the PDF equation for monodisperse particle pairs. The diffusivity contained the time integral of the Eulerian two-time correlation of fluid relative velocities seen by pairs that are nearly stationary. The two-time correlation was analytically resolved through the approximation that the temporal change in the fluid relative velocities seen by a pair occurs principally due to the advection of smaller eddies past the pair by large-scale eddies. Accordingly, two diffusivity expressions were obtained based on whether the pair centre of mass remained fixed during flow time scales, or moved in response to integral-scale eddies. In the current study, a quantitative analysis of the (Rani et al. 2014) stochastic theory is performed through a comparison of the pair statistics obtained using LS with those from DNS. LS consist of evolving the Langevin equations for pair separation and relative velocity, which is statistically equivalent to solving the classical Fokker–Planck form of the pair PDF equation. Langevin simulations of particle-pair dispersion were performed using three closure forms of the diffusivity – i.e. the one containing the time integral of the Eulerian two-time correlation of the seen fluid relative velocities and the two analytical diffusivity expressions. In the first closure form, the two-time correlation was computed using DNS of forced isotropic turbulence laden with stationary particles. The two analytical closure forms have the advantage that they can be evaluated using a model for the turbulence energy spectrum that closely matched the DNS spectrum. The three diffusivities are analysed to quantify the effects of the approximations made in deriving them. Pair relative-motion statistics obtained from the three sets of Langevin simulations are compared with the results from the DNS of (moving) particle-laden forced isotropic turbulence for $St_{\unicode[STIX]{x1D702}}=10,20,40,80$ and $Re_{\unicode[STIX]{x1D706}}=76,131$. Here, $St_{\unicode[STIX]{x1D702}}$ is the particle Stokes number based on the Kolmogorov time scale and $Re_{\unicode[STIX]{x1D706}}$ is the Taylor micro-scale Reynolds number. Statistics such as the radial distribution function (RDF), the variance and kurtosis of particle-pair relative velocities and the particle collision kernel were computed using both Langevin and DNS runs, and compared. The RDFs from the stochastic runs were in good agreement with those from the DNS. Also computed were the PDFs $\unicode[STIX]{x1D6FA}(U|r)$ and $\unicode[STIX]{x1D6FA}(U_{r}|r)$ of relative velocity $U$ and of the radial component of relative velocity $U_{r}$ respectively, both PDFs conditioned on separation $r$. The first closure form, involving the Eulerian two-time correlation of fluid relative velocities, showed the best agreement with the DNS results for the PDFs.


1991 ◽  
Vol 227 ◽  
pp. 473-493 ◽  
Author(s):  
S. Sarkar ◽  
G. Erlebacher ◽  
M. Y. Hussaini ◽  
H. O. Kreiss

It is shown that the dilatational terms that need to be modelled in compressible turbulence include not only the pressure-dilatation term but also another term - the compressible dissipation. The nature of the compressible velocity field, which generates these dilatational terms, is explored by asymptotic analysis of the compressible Navier-Stokes equations in the case of homogeneous turbulence. The lowest-order equations for the compressible field are solved and explicit expressions for some of the associated one-point moments are obtained. For low Mach numbers, the compressible mode has a fast timescale relative to the incompressible mode. Therefore, it is proposed that, in moderate Mach number homogeneous turbulence, the compressible component of the turbulence is in quasi-equilibrium with respect to the incompressible turbulence. A non-dimensional parameter which characterizes this equilibrium structure of the compressible mode is identified. Direct numerical simulations (DNS) of isotropic, compressible turbulence are performed, and their results are found to be in agreement with the theoretical analysis. A model for the compressible dissipation is proposed; the model is based on the asymptotic analysis and the direct numerical simulations. This model is calibrated with reference to the DNS results regarding the influence of compressibility on the decay rate of isotropic turbulence. An application of the proposed model to the compressible mixing layer has shown that the model is able to predict the dramatically reduced growth rate of the compressible mixing layer.


2010 ◽  
Vol 650 ◽  
pp. 1-4 ◽  
Author(s):  
G. TRYGGVASON

Direct numerical simulations are rapidly becoming one of the most important techniques to examine the dynamics of multiphase flows. Lucci, Ferrante & Elghobashi (J. Fluid Mech., 2010, this issue, vol. 650, pp. 5–55) address several fundamental issues for spherical particles in isotropic turbulence. They show the importance of including the finite size of the particles and discuss how particles of a size comparable to the largest length scale at which viscosity substantially affects the turbulent eddies (i.e. the Taylor microscale) always increase the dissipation of turbulent kinetic energy.


2014 ◽  
Vol 759 ◽  
Author(s):  
G. H. Good ◽  
P. J. Ireland ◽  
G. P. Bewley ◽  
E. Bodenschatz ◽  
L. R. Collins ◽  
...  

AbstractWe investigate the settling speeds and root mean square (r.m.s.) velocities of inertial particles in isotropic turbulence with gravity using experiments with water droplets in air turbulence from 32 loudspeaker jets and direct numerical simulations (DNS). The dependence on particle inertia, gravity and the scales of both the smallest and largest turbulent eddies is investigated. We isolate the mechanisms of turbulence settling modification and find that the reduced settling speeds of large particles in experiments are due to nonlinear drag effects. We demonstrate using DNS that reduced settling speeds with linear drag (e.g. see Nielsen, J. Sedim. Petrol., vol. 63, 1993, pp. 835–838) only arise in artificial flows that, by design, eliminate preferential sweeping by the eddies. Gravity and inertia both reduce the particle r.m.s. velocities and falling particles are more responsive to vertical than to horizontal fluctuations. The model by Wang & Stock (J. Atmos. Sci., vol. 50, 1993, pp. 1897–1913) captures these trends.


2006 ◽  
Vol 63 (11) ◽  
pp. 3006-3019 ◽  
Author(s):  
Jorgen S. Frederiksen ◽  
Steven M. Kepert

Abstract Dynamical subgrid-scale parameterizations of stochastic backscatter, eddy drain viscosity, and net eddy viscosity have been formulated and calculated for two-dimensional turbulent flows on the sphere based on the statistics of direct numerical simulations (DNSs) with the barotropic vorticity equation. A relatively simple methodology based on a stochastic model representation of the subgrid-scale eddies, but which takes into account the memory effects of turbulent eddies, has been employed. The parameterizations have a cusp behavior at the cutoff wavenumber of the retained scales and have closely similar forms to those based on eddy damped quasi-normal Markovian (EDQNM) and direct interaction approximation (DIA) closure models. Large-eddy simulations (LESs) incorporating DNS-based subgrid-scale parameterizations are found to have kinetic energy spectra that compare closely with the results of higher-resolution DNS at the scales of LES for both isotropic turbulence and Rossby wave turbulence. The methodology presented is general and should be equally applicable to parameterizations of baroclinic processes and convective processes. Applications of the parameterizations to climate models and prediction models are discussed.


Sign in / Sign up

Export Citation Format

Share Document