scholarly journals Intestinal B0AT1 (SLC6A19) and PEPT1 (SLC15A1) mRNA levels in European sea bass (Dicentrarchus labrax) reared in fresh water and fed fish and plant protein sources

2015 ◽  
Vol 4 ◽  
Author(s):  
Simona Rimoldi ◽  
Elena Bossi ◽  
Sheenan Harpaz ◽  
Anna Giulia Cattaneo ◽  
Giovanni Bernardini ◽  
...  

AbstractThe objective of the present study was to examine the effect of diets with descending fish meal (FM) inclusion levels and the addition of salt to the diet containing the lowest FM level on growth performances, feed conversion ratio, and intestinal solute carrier family 6 member 19 (SLC6A19) and oligopeptide transporter 1 (PEPT1) transcript levels, in freshwater-adapted European sea bass (Dicentrarchus labrax). We first isolated by molecular cloning and sequenced a full-length cDNA representing the neutral amino acid transporter SLC6A19 in sea bass. The cDNA sequence was deposited in GenBank database (accession no. KC812315). The twelve transmembrane domains and the ‘de novo’ prediction of the three-dimensional structure of SLC6A19 protein (634 amino acids) are presented. We then analysed diet-induced changes in the mRNA copies of SLC6A19 and PEPT1 genes in different portions of sea bass intestine using real-time RT-PCR. Sea bass were fed for 6 weeks on different diets, with ascending levels of fat or descending levels of FM, which was replaced with vegetable meal. The salt-enriched diet was prepared by adding 3 % NaCl to the diet containing 10 % FM. SLC6A19 mRNA in the anterior and posterior intestine of sea bass were not modulated by dietary protein sources and salt supplementation. Conversely, including salt in a diet containing a low FM percentage up-regulated the mRNA copies of PEPT1 in the hindgut. Fish growth correlated positively with the content of FM in the diets. Interestingly, the addition of salt to the diet containing 10 % FM improved feed intake, as well as specific growth rate and feed conversion ratio.

Author(s):  
Giulia Pascon ◽  
Maria Messina ◽  
Lisa Petit ◽  
Luisa Maria Pinheiro Valente ◽  
Beatriz Oliveira ◽  
...  

AbstractMicroalgae have been used as live food in aquatic species. In recent years, the interest in microalgae has considerably increased, thanks to the evolution of production techniques that have identified them as an ecologically attractive aquafeed ingredient. The present study provides the first data about the effects of dietary inclusion of a microalgae consortium grown in a high-rate algal pond system on zootechnical performance, morphometric indices, and dietary nutrient digestibility as well as morphology and functionality of the digestive system of European sea bass, Dicentrarchus labrax. A dietary treatment including a commercial mono-cultured microalgae (Nannochloropsis sp.) biomass was used for comparison. Six hundred and thirty-six European sea bass juveniles (18 ± 0.28 g) were randomly allotted into 12 experimental groups and fed 4 different diets for 10 weeks: a control diet based on fish meal, fish oil, and plant protein sources; a diet including 10% of Nannochloropsis spp. biomass (100 g/kg diet); and two diets including two levels (10% and 20%) of the microalgal consortium (100 and 200 g/kg diet). Even at the highest dietary inclusion level, the microalgal consortium (200 g/kg diet) did not affect feed palatability and fish growth performance. A significant decrease in the apparent digestibility of dry matter, protein, and energy was observed in diets including 10 and 20% of the microalgal consortium, but all fish exhibited a well-preserved intestinal histomorphology. Moreover, dietary inclusion with the microalgal consortium significantly increased the enzymatic activity of maltase, sucrase-isomaltase, and ɤ-glutamil transpeptidase in the distal intestine of the treated European sea bass. Algal consortium grown using fish farm effluents represents an attempt to enhance the utilization of natural biomasses in aquafeeds when used at 10 % as substitute of vegetable ingredients in diet for European sea bass.


2019 ◽  
Author(s):  
Richard W. Brill ◽  
Andrij Z. Horodysky ◽  
Allen R. Place ◽  
Mary E.M. Larkin ◽  
Renate Reimschuessel

AbstractDietary insufficiencies have been well documented to decrease growth rates and survival (and therefore overall production) in fish aquaculture. By contrast, the effects of dietary insufficiencies on the sensory biology of cultured fish remains largely unstudied. Diets based solely on plant protein sources could have advantages over fish-based diets, because of the cost and ecological effects of the latter, but lack the amino acid taurine. Adequate levels of taurine are, however, necessary for the development of a fully functional visual system in mammals. As part of ongoing studies to determine the suitability of plant-based diets, we investigated the effects of normal and reduced taurine dietary levels on retinal anatomy and function in European sea bass (Dicentrarchus labrax). We could not demonstrate any effects of dietary taurine level on retinal anatomy, nor the functional properties of luminous sensitivity or temporal resolution (measured as flicker fusion frequency). We did, however, find an effect on spectral sensitivity. The peak of spectral sensitivity of individuals fed a 5% taurine diet was rightward shifted (i.e., towards longer wavelengths) relative to that of fish fed a 0% or 1.5 % taurine diet. This difference in in spectral sensitivity was due to a relatively lower level of middle wavelength pigment (maximum absorbance ≈500 nm) in fish fed a 5% taurine diet. Changes in spectral sensitivity resulting from diets containing different taurine levels are unlikely to be detrimental to fish destined for market but could be in fishes that are being reared for stock enhancement programs.


Aquaculture ◽  
2000 ◽  
Vol 182 (3-4) ◽  
pp. 329-338 ◽  
Author(s):  
M Azzaydi ◽  
F.J Martı́nez ◽  
S Zamora ◽  
F.J Sánchez-Vázquez ◽  
J.A Madrid

2020 ◽  
Vol 8 (9) ◽  
pp. 1346 ◽  
Author(s):  
David Pérez-Pascual ◽  
Jordi Estellé ◽  
Gilbert Dutto ◽  
Charles Rodde ◽  
Jean-François Bernardet ◽  
...  

Innovative fish diets made of terrestrial plants supplemented with sustainable protein sources free of fish-derived proteins could contribute to reducing the environmental impact of the farmed fish industry. However, such alternative diets may influence fish gut microbial community, health, and, ultimately, growth performance. Here, we developed five fish feed formulas composed of terrestrial plant-based nutrients, in which fish-derived proteins were substituted with sustainable protein sources, including insect larvae, cyanobacteria, yeast, or recycled processed poultry protein. We then analyzed the growth performance of European sea bass (Dicentrarchus labrax L.) and the evolution of gut microbiota of fish fed the five formulations. We showed that replacement of 15% protein of a vegetal formulation by insect or yeast proteins led to a significantly higher fish growth performance and feed intake when compared with the full vegetal formulation, with feed conversion ratio similar to a commercial diet. 16S rRNA gene sequencing monitoring of the sea bass gut microbial community showed a predominance of Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes phyla. The partial replacement of protein source in fish diets was not associated with significant differences on gut microbial richness. Overall, our study highlights the adaptability of European sea bass gut microbiota composition to changes in fish diet and identifies promising alternative protein sources for sustainable aquafeeds with terrestrial vegetal complements.


2019 ◽  
Author(s):  
Farouk Messad ◽  
Isabelle Louveau ◽  
Basile Koffi ◽  
Hélène Gilbert ◽  
Florence Gondret

Abstract Background Improving feed efficiency (FE) is a major challenge in pig production. This complex trait is characterized by a high variability. Therefore, the identification of predictors of FE may be a relevant strategy to reduce phenotyping efforts in breeding and selection programs. The aim of this study was to investigate the suitability of expressed muscle genes in prediction of FE traits in growing pigs. The approach considered different transcriptomics experiments to cover a large range of FE values and identify reliable predictors. Results Microarrays data were obtained from longissimus muscles of two lines divergently selected for residual feed intake (RFI). Pigs (n = 71) from three experiments belonged to generations 6 to 8 of selection, were fed either a diet with a standard composition or a diet rich in fiber and lipids, received feed ad libitum or at restricted level, and weighed between 80 and 115 kg at slaughter. For each pig, breeding value for RFI was estimated (RFI-BV), and feed conversion ratio (FCR) and energy-based feed conversion ratio (FCRe) were calculated during the test periods. Gradient boosting algorithms were used on the merged muscle transcriptomes to identify very important predictors of FE traits. About 20,405 annotated molecular probes were commonly expressed in longissimus muscle across experiments. Six to 267 expressed muscle genes covering a variety of biological processes were found as important predictors for RFI-BV (R2=0.63-0.65), FCR (R2=0.61-0.70) and FCRe (R2=0.49-0.52). The error of prediction was less than 8% for FCR. Altogether, 56 predictors were common to RFI-BV and FCR. Expression levels of 24 target genes were further measured by qPCR. Linear regression confirmed the good accuracy of combining mRNA levels of these genes to fit FE traits (RFI-BV: R2=0.73, FRC: R2=0.76; FCRe: R2=0.75). Stepwise regression procedure highlighted 10 genes (FKBP5, MUM1, AKAP12, FYN, TMED3, PHKB, TGF, SOCS6, ILR4, and FRAS1) in a linear combination predicting FCR and FCRe. In addition, FKBP5 and expression levels of five other genes (IGF2, SERINC3, CSRNP3, EZR and RPL16) significantly contributed to RFI-BV. Conclusion It was possible to identify few genes expressed in muscle that might be reliable predictors of feed efficiency.


2019 ◽  
Author(s):  
Farouk Messad ◽  
Isabelle Louveau ◽  
Basile Koffi ◽  
Hélène Gilbert ◽  
Florence Gondret

Abstract Background Improving feed efficiency (FE) is a major challenge in pig production. This complex trait is characterized by a high variability. Therefore, the identification of predictors of FE may be a relevant strategy to reduce phenotyping efforts in breeding and selection programs. The aim of this study was to investigate the suitability of expressed muscle genes in prediction of FE traits in growing pigs. The approach considered different transcriptomics experiments to cover a large range of FE values and identify reliable predictors. Results Microarrays data were obtained from longissimus muscles of two lines divergently selected for residual feed intake (RFI). Pigs (n = 71) from three experiments belonged to generations 6 to 8 of selection, were fed either a diet with a standard composition or a diet rich in fiber and lipids, received feed ad libitum or at restricted level, and weighed between 80 and 115 kg at slaughter. For each pig, breeding value for RFI was estimated (RFI-BV), and feed conversion ratio (FCR) and energy-based feed conversion ratio (FCRe) were calculated during the test periods. Gradient boosting algorithms were used on the merged muscle transcriptomes to identify very important predictors of FE traits. About 20,405 annotated molecular probes were commonly expressed in longissimus muscle across experiments. Six to 267 expressed muscle genes covering a variety of biological processes were found as important predictors for RFI-BV (R2=0.63-0.65), FCR (R2=0.61-0.70) and FCRe (R2=0.49-0.52). The error of prediction was less than 8% for FCR. Altogether, 56 predictors were common to RFI-BV and FCR. Expression levels of 24 target genes were further measured by qPCR. Linear regression confirmed the good accuracy of combining mRNA levels of these genes to fit FE traits (RFI-BV: R2=0.73, FRC: R2=0.76; FCRe: R2=0.75). Stepwise regression procedure highlighted 10 genes (FKBP5, MUM1, AKAP12, FYN, TMED3, PHKB, TGF, SOCS6, ILR4, and FRAS1) in a linear combination predicting FCR and FCRe. In addition, FKBP5 and expression levels of five other genes (IGF2, SERINC3, CSRNP3, EZR and RPL16) significantly contributed to RFI-BV. Conclusion It was possible to identify few genes expressed in muscle that might be reliable predictors of feed efficiency.


2020 ◽  
Vol 8 (11) ◽  
pp. 934
Author(s):  
Pierluigi Carbonara ◽  
Walter Zupa ◽  
Isabella Bitetto ◽  
Sébastien Alfonso ◽  
Mariano Dara ◽  
...  

Three groups of European sea bass (Dicentrarchus labrax) were fed for seven months, with either a conventional diet or two different organic diets, which contain organic vegetables and a natural antioxidant compound. The two organic diets differed themselves in terms of raw proteins, fish oil, and lipid contents. Sea bass welfare condition was assessed in relation to these three diets, using 16 different indicators. These were: swimming activity (recovery test, muscle activity), haematological and serological stress indicators (haematocrit, haemoglobin, red-blood-cell count, cortisol, glucose, lactate), aspecific immunity parameter (lysozyme), indicators of exposure to organic contaminants (7-ethoxyresorufin-O-deethylase and glutathione-S-transferase), and growth parameters (weight gain, specific growth rate, feed conversion ratio, protein efficiency ratio, and hepato-somatic index). Most of these parameters individually did not give consistent responses, but their integration can provide an accurate evaluation of the fish welfare conditions among the three diet experimental groups. The multiparametric approach outlined a comprehensive picture of sea bass physiological state. The principal component analysis and the multi-criteria-decision-analysis were found to be useful tools for an integrated fish welfare assessment, highlighting that the best welfare condition was achieved in the experimental group fed with the protein-rich organic diet.


2021 ◽  
Vol 20 (1) ◽  
pp. 56-64
Author(s):  
A.C. AKPOJO ◽  
H. A BUHARI ◽  
I. O. ADEJUMO ◽  
A. T. ADESOLA

Pig is one of the most consumed meat across the globe. However, its production is limited by high cost of feed ingredients. Hence, the search for alternative cheap feed ingredients without any loss to animal’s performance is on the increase. The influence of different protein sources and feed types (wet or dry) was investigated on the growth performance, haematology and serum biochemistry of weaned pigs. Weight gain and feed conversion ratio were higher for soybean and full-fat soya-based diets. Feed and water intake were not significantly different amongst treatments. Nature of feed did not influence weight gain, feed intake and feed conversion ratio. Groundnut cake meal may compare with soybean meal in pig’s diet, but it may have to be supplemented with lysine, methionine or fish meal.    


Sign in / Sign up

Export Citation Format

Share Document