scholarly journals Potential application and beneficial effects of a marine microalgal biomass produced in a high-rate algal pond (HRAP) in diets of European sea bass, Dicentrarchus labrax

Author(s):  
Giulia Pascon ◽  
Maria Messina ◽  
Lisa Petit ◽  
Luisa Maria Pinheiro Valente ◽  
Beatriz Oliveira ◽  
...  

AbstractMicroalgae have been used as live food in aquatic species. In recent years, the interest in microalgae has considerably increased, thanks to the evolution of production techniques that have identified them as an ecologically attractive aquafeed ingredient. The present study provides the first data about the effects of dietary inclusion of a microalgae consortium grown in a high-rate algal pond system on zootechnical performance, morphometric indices, and dietary nutrient digestibility as well as morphology and functionality of the digestive system of European sea bass, Dicentrarchus labrax. A dietary treatment including a commercial mono-cultured microalgae (Nannochloropsis sp.) biomass was used for comparison. Six hundred and thirty-six European sea bass juveniles (18 ± 0.28 g) were randomly allotted into 12 experimental groups and fed 4 different diets for 10 weeks: a control diet based on fish meal, fish oil, and plant protein sources; a diet including 10% of Nannochloropsis spp. biomass (100 g/kg diet); and two diets including two levels (10% and 20%) of the microalgal consortium (100 and 200 g/kg diet). Even at the highest dietary inclusion level, the microalgal consortium (200 g/kg diet) did not affect feed palatability and fish growth performance. A significant decrease in the apparent digestibility of dry matter, protein, and energy was observed in diets including 10 and 20% of the microalgal consortium, but all fish exhibited a well-preserved intestinal histomorphology. Moreover, dietary inclusion with the microalgal consortium significantly increased the enzymatic activity of maltase, sucrase-isomaltase, and ɤ-glutamil transpeptidase in the distal intestine of the treated European sea bass. Algal consortium grown using fish farm effluents represents an attempt to enhance the utilization of natural biomasses in aquafeeds when used at 10 % as substitute of vegetable ingredients in diet for European sea bass.

2015 ◽  
Vol 4 ◽  
Author(s):  
Simona Rimoldi ◽  
Elena Bossi ◽  
Sheenan Harpaz ◽  
Anna Giulia Cattaneo ◽  
Giovanni Bernardini ◽  
...  

AbstractThe objective of the present study was to examine the effect of diets with descending fish meal (FM) inclusion levels and the addition of salt to the diet containing the lowest FM level on growth performances, feed conversion ratio, and intestinal solute carrier family 6 member 19 (SLC6A19) and oligopeptide transporter 1 (PEPT1) transcript levels, in freshwater-adapted European sea bass (Dicentrarchus labrax). We first isolated by molecular cloning and sequenced a full-length cDNA representing the neutral amino acid transporter SLC6A19 in sea bass. The cDNA sequence was deposited in GenBank database (accession no. KC812315). The twelve transmembrane domains and the ‘de novo’ prediction of the three-dimensional structure of SLC6A19 protein (634 amino acids) are presented. We then analysed diet-induced changes in the mRNA copies of SLC6A19 and PEPT1 genes in different portions of sea bass intestine using real-time RT-PCR. Sea bass were fed for 6 weeks on different diets, with ascending levels of fat or descending levels of FM, which was replaced with vegetable meal. The salt-enriched diet was prepared by adding 3 % NaCl to the diet containing 10 % FM. SLC6A19 mRNA in the anterior and posterior intestine of sea bass were not modulated by dietary protein sources and salt supplementation. Conversely, including salt in a diet containing a low FM percentage up-regulated the mRNA copies of PEPT1 in the hindgut. Fish growth correlated positively with the content of FM in the diets. Interestingly, the addition of salt to the diet containing 10 % FM improved feed intake, as well as specific growth rate and feed conversion ratio.


2019 ◽  
Author(s):  
Richard W. Brill ◽  
Andrij Z. Horodysky ◽  
Allen R. Place ◽  
Mary E.M. Larkin ◽  
Renate Reimschuessel

AbstractDietary insufficiencies have been well documented to decrease growth rates and survival (and therefore overall production) in fish aquaculture. By contrast, the effects of dietary insufficiencies on the sensory biology of cultured fish remains largely unstudied. Diets based solely on plant protein sources could have advantages over fish-based diets, because of the cost and ecological effects of the latter, but lack the amino acid taurine. Adequate levels of taurine are, however, necessary for the development of a fully functional visual system in mammals. As part of ongoing studies to determine the suitability of plant-based diets, we investigated the effects of normal and reduced taurine dietary levels on retinal anatomy and function in European sea bass (Dicentrarchus labrax). We could not demonstrate any effects of dietary taurine level on retinal anatomy, nor the functional properties of luminous sensitivity or temporal resolution (measured as flicker fusion frequency). We did, however, find an effect on spectral sensitivity. The peak of spectral sensitivity of individuals fed a 5% taurine diet was rightward shifted (i.e., towards longer wavelengths) relative to that of fish fed a 0% or 1.5 % taurine diet. This difference in in spectral sensitivity was due to a relatively lower level of middle wavelength pigment (maximum absorbance ≈500 nm) in fish fed a 5% taurine diet. Changes in spectral sensitivity resulting from diets containing different taurine levels are unlikely to be detrimental to fish destined for market but could be in fishes that are being reared for stock enhancement programs.


Aquaculture ◽  
1989 ◽  
Vol 77 (1) ◽  
pp. 71-73 ◽  
Author(s):  
P. Spyridakis ◽  
R. Metailler ◽  
J. Gabaudan

2019 ◽  
Vol 46 (2) ◽  
pp. 681-697 ◽  
Author(s):  
F. Rivero-Ramírez ◽  
S. Torrecillas ◽  
M. B. Betancor ◽  
M. S. Izquierdo ◽  
M. J. Caballero ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3401
Author(s):  
Maurizio Mazzoni ◽  
Giulia Lattanzio ◽  
Alessio Bonaldo ◽  
Claudio Tagliavia ◽  
Luca Parma ◽  
...  

The current work was designed to assess the effect of feed supplemented with essential oils (EOs) on the histological features in sea bass’s gastric mucosa. Fish were fed three diets: control diet (CTR), HERBAL MIX® made with natural EOs (N-EOs), or HERBAL MIX® made with artificial EOs obtained by synthesis (S-EOs) during a 117-day feeding trial. Thereafter, the oxyntopeptic cells (OPs) and the ghrelin (GHR) and somatostatin (SOM) enteroendocrine cells (EECs) in the gastric mucosa were evaluated. The Na+K+-ATPase antibody was used to label OPs, while, for the EECs, anti-SOM and anti-GHR antibody were used. The highest density of OP immunoreactive (IR) area was in the CTR group (0.66 mm2 ± 0.1). The OP-IR area was reduced in the N-EO diet group (0.22 mm2 ± 1; CTR vs. N-EOs, p < 0.005), while in the S-EO diet group (0.39 mm2 ± 1) a trend was observed. We observed an increase of the number of SOM-IR cells in the N-EO diet (15.6 ± 4.2) compared to that in the CTR (11.8 ± 3.7) (N-EOs vs. CTR; p < 0.05), but not in the S-EOs diet. These observations will provide a basis to advance current knowledge on the anatomy and digestive physiology of this species in relation to pro-heath feeds.


2010 ◽  
Vol 23 (2) ◽  
pp. 217-224 ◽  
Author(s):  
Ivona Mladineo ◽  
Ivana Bočina ◽  
Cyrille Przybyla ◽  
Julie Fievet ◽  
Jean-Paul Blancheton

2006 ◽  
Vol 95 (4) ◽  
pp. 677-687 ◽  
Author(s):  
Laure A. N. Villeneuve ◽  
Enric Gisbert ◽  
Jacques Moriceau ◽  
Chantal L. Cahu ◽  
José L. Zambonino Infante

The effect of the feeding period on larval development was investigated in European sea bass larvae by considering the expression level of some genes involved in morphogenesis. Larvae were fed a control diet except during three different periods (period A: from 8 to 13d post-hatching (dph); period B: from 13 to 18dph; period C: from 18 to 23dph) with two compound diets containing high levels of vitamin A or PUFA. European sea bass morphogenesis was affected by these two dietary nutrients during the early stages of development. The genes involved in morphogenesis could be modulated between 8 and 13dph, and our results indicated that retinoids and fatty acids influenced two different molecular pathways that in turn implicated two different gene cascades, resulting in two different kinds of malformation. Hypervitaminosis A delayed development, reducing the number of vertebral segments and disturbing bone formation in the cephalic region. These malformations were correlated to an upregulation of retinoic acid receptor γ, retinoid X receptor (RXR) α and bone morphogenetic protein (BMP)4. An excess of PUFA accelerated the osteoblast differentiation process through the upregulation of RXRα and BMP4, leading to a supernumerary vertebra. These results suggest that the composition of diets devoted to marine fish larvae has a particularly determining effect before 13dph on the subsequent development of larvae and juvenile fish.


2020 ◽  
Vol 7 ◽  
Author(s):  
Carolina Castro ◽  
Filipe Coutinho ◽  
Paula Iglesias ◽  
Aires Oliva-Teles ◽  
Ana Couto

This study aimed to evaluate the effects of including microalgae Chlorella sp. or Nannochloropsis sp. in plant-based diets on antioxidant mechanisms of European sea bass (Dicentrarchus labrax) juveniles. For this purpose, three isoproteic (50%) and isolipidic (19%) diets were formulated: a practical diet, containing 15% fish meal (FM) and plant ingredients as the protein source and a mixture of fish oil and vegetable oils (40: 60) as lipid source (control diet); and two diets identical to the control but with the FM replaced by Nannochloropsis sp. or Chlorella sp. (diets Nanno and Chlo, respectively). The diets were offered to quadruplicate groups of 25 fish (initial body weight: 24 ± 1 g) for 11 weeks and then enzymatic and non-enzymatic antioxidant mechanisms and lipid oxidative biomarkers were assessed in the liver and intestine of these fish. Results showed that the antioxidant response was tissue-dependent, with the liver exhibiting lower glutathione peroxidase and glucose-6-phosphate dehydrogenase (only in Chlo group) activities, and intestine lower superoxide dismutase activity with the diets including microalgae compared to control diet. An increase of oxidized glutathione content was also observed in the intestine of fish fed the microalgae diets. Catalase and glutathione reductase activities, oxidative stress index, and total and reduced glutathione, were unaffected by dietary treatments in both tissues. Overall, the lipid peroxidation status was not compromised by the replacement of FM by microalgae.


Aquaculture ◽  
1989 ◽  
Vol 77 (1) ◽  
pp. 61-70 ◽  
Author(s):  
P. Spyridakis ◽  
R. Metailler ◽  
J. Gabaudan ◽  
A. Riaza

Sign in / Sign up

Export Citation Format

Share Document