scholarly journals Tidal bending and strand cracks at the Kamb Ice Stream grounding line, West Antarctica

2016 ◽  
Vol 62 (235) ◽  
pp. 816-824 ◽  
Author(s):  
CHRISTINA L. HULBE ◽  
MARIN KLINGER ◽  
MEGAN MASTERSON ◽  
GINNY CATANIA ◽  
KENNETH CRUIKSHANK ◽  
...  

ABSTRACTAn extensive set of shore-parallel fractures are observed at the grounding line of Kamb Ice Stream (KIS) in West Antarctica. Seismicity measured in the grounding zone is, as elsewhere around Antarctica, tidally forced and moreover strand cracks propagate nearly exclusively on the falling tide. Measured surface deflection and a model of fracture propagation are used to conclude that bending on the falling tide favors propagation while bending on the rising tide suppresses propagation. Without the perturbation due to tidal bending, strand cracks would be rare and appear farther downstream than observed. We speculate that the very large number of cracks observed at KIS is due to the stagnant-to-floating transition at that grounding line, which allows cyclic bending of the same ice and relatively large stretching rates.

2018 ◽  
Vol 12 (9) ◽  
pp. 2821-2829 ◽  
Author(s):  
Nicholas Holschuh ◽  
Knut Christianson ◽  
Howard Conway ◽  
Robert W. Jacobel ◽  
Brian C. Welch

Abstract. Variations in properties controlling ice flow (e.g., topography, accumulation rate, basal friction) are recorded by structures in glacial stratigraphy. When anomalies that disturb the stratigraphy are fixed in space, the structures they produce advect away from the source and can be used to trace flow pathways and reconstruct ice-flow patterns of the past. Here we provide an example of one of these persistent tracers: a prominent unconformity in the glacial layering that originates at Mt. Resnik, part of a subglacial volcanic complex near Kamb Ice Stream in central West Antarctica. The unconformity records a change in the regional thinning behavior seemingly coincident (∼3440±117 a) with stabilization of grounding-line retreat in the Ross Sea Embayment. We argue that this feature records both the flow and thinning history far upstream of the Ross Sea grounding line, indicating a limited influence of observed ice-stream stagnation cycles on large-scale ice-sheet routing over the last ∼ 5700 years.


2005 ◽  
Vol 51 (174) ◽  
pp. 423-431 ◽  
Author(s):  
G. A. Catania ◽  
H. Conway ◽  
C.F. Raymond ◽  
T.A. Scambos

AbstractSatellite images of Kamb Ice Stream (formerly Ice Stream C), West Antarctica, reveal several long, curved linear features (lineations) oriented sub-parallel to the ice-flow direction. We use ground-based radar to characterize the internal layer stratigraphy of these lineations and the terrains that they bound. Some lineations are relict ice-stream shear margins, identified by hyperbolic diffractors near the surface (interpreted to be buried crevasses) and highly disturbed internal layers at depth. Satellite images show another set of lineations outside the relict margins that wrap around the ends of the surrounding inter-ice-stream ridges. Internal layers beneath these lineations are downwarped strongly into a syncline shape. The internal stratigraphy of the terrain between these lineations and the relict margins is characterized by deep hyperbolic line diffractors. Our preferred hypothesis for the origin of this terrain is that it was floating sometime in the past; the deep hyperbolas are interpreted to be basal crevasses, and the strongly downwarped internal layers mark the position of a relict grounding line. Our study shows that lineations and intervening terrains have different internal layer characteristics implying different origins. Differentiation between these features is not possible using satellite images alone.


2018 ◽  
Author(s):  
Nicholas Holschuh ◽  
Knut Christianson ◽  
Howard Conway ◽  
Robert W. Jacobel ◽  
Brian C. Welch

Abstract. Variations in properties controlling ice flow (e.g., topography, accumulation rate, basal friction) are recorded by structures in glacial stratigraphy. When anomalies that disturb the stratigraphy are fixed in space, the structures they produce advect away from the source, and can be used to trace flow pathways and reconstruct ice-flow patterns of the past. Here we provide an example of one of these persistent tracers: a prominent unconformity in the glacial layering that originates at Mt. Resnik, part of a subglacial volcanic complex near Kamb Ice Stream in central West Antarctica. The unconformity records a change in the regional thinning behavior seemingly coincident (∼ 3440 ± 117a) with stabilization of grounding-line retreat along the Ross Ice Shelf. We argue that this feature records both the flow and thinning history far upstream of the Ross Sea grounding line, indicating a limited influence of observed ice-stream stagnation cycles on large-scale ice-sheet routing over the last ∼ 5700 years.


2002 ◽  
Vol 48 (163) ◽  
pp. 552-558 ◽  
Author(s):  
Marjorie Schmeltz ◽  
Eric Rignot ◽  
Todd K. Dupont ◽  
Douglas R. MacAyeal

AbstractWe use a finite-element model of coupled ice-stream/ice-shelf flow to study the sensitivity of Pine Island Glacier, West Antarctica, to changes in ice-shelf and basal conditions. By tuning a softening coefficient of the ice along the glacier margins, and a basal friction coefficient controlling the distribution of basal shear stress underneath the ice stream, we are able to match model velocity to that observed with interferometric synthetic aperture radar (InSAR). We use the model to investigate the effect of small perturbations on ice flow. We find that a 5.5–13% reduction in our initial ice-shelf area increases the glacier velocity by 3.5–10% at the grounding line. The removal of the entire ice shelf increases the grounding-line velocity by > 70%. The changes in velocity associated with ice-shelf reduction are felt several tens of km inland. Alternatively, a 5% reduction in basal shear stress increases the glacier velocity by 13% at the grounding line. By contrast, softening of the glacier side margins would have to be increased a lot more to produce a comparable change in ice velocity. Hence, both the ice-shelf buttressing and the basal shear stress contribute significant resistance to the flow of Pine Island Glacier.


2006 ◽  
Vol 33 (14) ◽  
Author(s):  
G. A. Catania ◽  
T. A. Scambos ◽  
H. Conway ◽  
C. F. Raymond

1990 ◽  
Vol 14 ◽  
pp. 273-277 ◽  
Author(s):  
S.N. Stephenson ◽  
R.A. Bindschadler

Ten Landsat Thematic Mapper images together show Ice Streams E, D and most of Ice Stream C on Siple Coast, West Antarctica. The images are interpreted to reveal aspects of both spatial and temporal evolution of the ice streams. Onset of ice-stream flow appears to occur at distributed sites within the ice-stream catchment, and the apparent enhanced flow continues in channels until they join, forming the main ice stream. Most crevassing on these ice streams is associated with features of horizontal dimensions between 5 and 20 km. We suggest these features are caused by bed structures which may be an important source of restraint to ice flow, similar to ice rumples on ice shelves. A pattern of features near the grounding line of the now-stagnant Ice Stream C are interpreted as having formed because there was a period of reduced flux before the ice stream stopped.


1990 ◽  
Vol 14 ◽  
pp. 273-277 ◽  
Author(s):  
S.N. Stephenson ◽  
R.A. Bindschadler

Ten Landsat Thematic Mapper images together show Ice Streams E, D and most of Ice Stream C on Siple Coast, West Antarctica. The images are interpreted to reveal aspects of both spatial and temporal evolution of the ice streams. Onset of ice-stream flow appears to occur at distributed sites within the ice-stream catchment, and the apparent enhanced flow continues in channels until they join, forming the main ice stream. Most crevassing on these ice streams is associated with features of horizontal dimensions between 5 and 20 km. We suggest these features are caused by bed structures which may be an important source of restraint to ice flow, similar to ice rumples on ice shelves. A pattern of features near the grounding line of the now-stagnant Ice Stream C are interpreted as having formed because there was a period of reduced flux before the ice stream stopped.


2009 ◽  
Vol 50 (52) ◽  
pp. 35-40 ◽  
Author(s):  
Helena J. Sykes ◽  
Tavi Murray ◽  
Adrian Luckman

AbstractEvans Ice Stream, West Antarctica, has five tributaries and a complex grounding zone. The grounding zone of Evans Ice Stream, between the landward and seaward limits of tidal flexing, was mapped using SAR interferometry. The width of the mapped grounding zone was compared with that derived from an elastic beam model, and the tidal height changes derived from interferometry were compared with the results of a tidal model. Results show that in 1994 and 1996 the Evans grounding zone was located up to 100 km upstream of its location in the BEDMAP dataset. The grounding line of Evans Ice Stream is subjected to 5 m vertical tidal forcing, which would clearly affect ice-stream flow.


Geology ◽  
2004 ◽  
Vol 32 (6) ◽  
pp. 481 ◽  
Author(s):  
Felix Ng ◽  
Howard Conway

Sign in / Sign up

Export Citation Format

Share Document