scholarly journals Ice flow variations at Polar Record Glacier, East Antarctica

2019 ◽  
Vol 65 (250) ◽  
pp. 279-287 ◽  
Author(s):  
QI LIANG ◽  
CHUNXIA ZHOU ◽  
IAN M. HOWAT ◽  
SEONGSU JEONG ◽  
RUIXI LIU ◽  
...  

ABSTRACTRelatively little is known about the physical mechanisms that drive the dynamics of the East Antarctic outlet glaciers. Here we conduct a remote-sensing investigation of the Polar Record Glacier (PRG), East Antarctica to analyze its ice flow acceleration, ice front variations and ice surface melting. Ice flow speeds at PRG increased by up to 15% from 2005 to 2015, with substantial interannual fluctuations. The ice velocities also showed seasonal variations, accelerating by up to 9% between September and January. Multiple mechanisms contribute to the observed seasonal variations: the initial acceleration may result from the lost back-stress provided by the sea ice in the austral spring and the later speedup relate to the surface meltwater that leads to weakened ice shelf and shear margins. The sensitivity of the PRG to oceanic forcing is confirmed by comparing the secular ice velocity increases with ocean temperatures. These measurements suggest that the dynamics of East Antarctic ice shelves are sensitive to melt at both the surface and base, at a range of timescales.

1982 ◽  
Vol 3 ◽  
pp. 32-35 ◽  
Author(s):  
R. L. Brooks

During the operational lifetime of the Seasat altimeter from 3 July to 10 October 1978, more than 450 overflights were made over East Antarctica inland to latitude 72°S. An analysis of selected passes over a variety of ice features demonstrates that the oceanographic altimeter performed surprisingly well over the ice sheet and ice shelves, acquiring useful measurements during approximately 70% of each pass. The altimeter's onboard tracking system dampened out the ice-surface elevations, but post-flight retracking of the stored return waveforms reveals excellent ice-surface details. After waveform retracking, the altimeter repeatability is better than ±1 m.


1999 ◽  
Vol 45 (150) ◽  
pp. 384-393 ◽  
Author(s):  
C. Mayer ◽  
P. Huybrechts

AbstractA detailed investigation was performed of ice-dynamic conditions across the southern grounding zone of Ekströmisen, at the mouth of a regular East Antarctic outlet glacier not characterized by ice-streaming. Accurate field measurements along a profile 20 km long served as input in a two-dimensional numerical ice-flow model in order to calculate the variation of stress, strain rate and velocity with depth. The model results point to a sharp transition between the mechanics of grounded and floating ice, with a transition zone of only a few km between the two. Vertical shear, most of it near the base, was found to be the dominant flow mechanism in grounded ice. This part is also characterized by a distinct succession of surface undulations which are in turn controlled by variations in resistive stresses at the bottom. The associated phase shift between driving stress and basal drag was found to be accommodated by differential longitudinal pushes and pulls at the base. The flow in the upper half of the profile, on the other hand, is extensive everywhere. The adjacent ice shelf is characterized by small stress and velocity gradients in both the vertical and horizontal directions of the vertical section, and therefore has little deformation. A derived longitudinal deviatoric normal stress of only one-tenth of the value required for freely floating ice shelves reflects a large back-stress originating from friction along the side-walls of the narrow embayment.


2015 ◽  
Vol 27 (5) ◽  
pp. 511-523 ◽  
Author(s):  
M.L. Pittard ◽  
J.L. Roberts ◽  
C.S. Watson ◽  
B.K. Galton-Fenzi ◽  
R.C. Warner ◽  
...  

AbstractMonitoring the rate of ice flow into ice shelves is vital to understanding how, where and when mass changes occur in Antarctica. Previous observations of ice surface velocity indicate that the Amery Ice Shelf and tributary glaciers have been relatively stable over the period 1968 to 1999. This study measured the displacement of features on the ice surface over a sequence of Landsat 7 images separated by approximately one year and spanning 2004 to 2012 using the surface feature tracking software IMCORR. The focus is on the region surrounding the southern grounding zone of the Amery Ice Shelf and its primary tributary glaciers: the Fisher, Lambert and Mellor glaciers. No significant changes in surface velocity were observed over this period. Accordingly, the velocity fields from each image pair between 2004 and 2012 were used to synthesize an average velocity dataset of the Amery Ice Shelf region and to compare it to previously published velocity datasets and in situ global positioning system velocity observations. No significant change in ice surface velocities was found between 2004 and 2012 in the Amery Ice Shelf region, which suggests that it continues to remain stable.


2016 ◽  
Author(s):  
B. W. J. Miles ◽  
C. R. Stokes ◽  
S. S. R. Jamieson

Abstract. The floating ice shelves and glacier tongues which fringe the Antarctic continent are important because they help buttress ice flow from the ice sheet interior. Dynamic feedbacks associated with glacier calving have the potential to reduce buttressing and subsequently increase ice flow into the ocean. However, there are few high temporal resolution studies on glacier calving, especially in East Antarctica. Here we use remote sensing to investigate monthly glacier terminus change across six marine-terminating outlet glaciers in Porpoise Bay (−76° S, 128° E), Wilkes Land (East Antarctica), between November 2002 and March 2012. This reveals a large simultaneous calving event in January 2007, resulting in a total of ~ 2900 km2 of ice being removed from glacier tongues. Our observations suggest that sea-ice must be removed from glacier termini for any form of calving to take place, and we link this major calving event to a rapid break-up of the multi-year sea-ice which usually occupies Porpoise Bay. Using sea-ice concentrations as a proxy for glacier calving, and by analysing available satellite imagery stretching back to 1963, we reconstruct the long-term calving activity of the largest glacier in Porpoise Bay: Holmes (West) Glacier. This reveals that its present-day velocity (~ 1450 m a−1) is approximately 50 % faster than between 1963 and 1973 (~ 900 m a−1). We also observed the start of a large calving event in Porpoise Bay in March 2016 that is consistent with our reconstructions of the periodicity of major calving events. These results highlight the importance of sea-ice in modulating outlet glacier calving and velocity in East Antarctica.


1982 ◽  
Vol 3 ◽  
pp. 32-35 ◽  
Author(s):  
R. L. Brooks

During the operational lifetime of the Seasat altimeter from 3 July to 10 October 1978, more than 450 overflights were made over East Antarctica inland to latitude 72°S. An analysis of selected passes over a variety of ice features demonstrates that the oceanographic altimeter performed surprisingly well over the ice sheet and ice shelves, acquiring useful measurements during approximately 70% of each pass. The altimeter's onboard tracking system dampened out the ice-surface elevations, but post-flight retracking of the stored return waveforms reveals excellent ice-surface details. After waveform retracking, the altimeter repeatability is better than ±1 m.


2021 ◽  
Vol 15 (2) ◽  
pp. 663-676
Author(s):  
Bertie W. J. Miles ◽  
Jim R. Jordan ◽  
Chris R. Stokes ◽  
Stewart S. R. Jamieson ◽  
G. Hilmar Gudmundsson ◽  
...  

Abstract. After Totten, Denman Glacier is the largest contributor to sea level rise in East Antarctica. Denman's catchment contains an ice volume equivalent to 1.5 m of global sea level and sits in the Aurora Subglacial Basin (ASB). Geological evidence of this basin's sensitivity to past warm periods, combined with recent observations showing that Denman's ice speed is accelerating and its grounding line is retreating along a retrograde slope, has raised the prospect that its contributions to sea level rise could accelerate. In this study, we produce the first long-term (∼50 years) record of past glacier behaviour (ice flow speed, ice tongue structure and calving) and combine these observations with numerical modelling to explore the likely drivers of its recent change. We find a spatially widespread acceleration of the Denman system since the 1970s across both its grounded (17±4 % acceleration; 1972–2017) and floating portions (36±5 % acceleration; 1972–2017). Our numerical modelling experiments show that a combination of grounding line retreat, ice tongue thinning and the unpinning of Denman's ice tongue from a pinning point following its last major calving event are required to simulate an acceleration comparable with observations. Given its bed topography and the geological evidence that Denman Glacier has retreated substantially in the past, its recent grounding line retreat and ice flow acceleration suggest that it could be poised to make a significant contribution to sea level in the near future.


2020 ◽  
Author(s):  
Lukas Müller ◽  
Martin Horwath ◽  
Mirko Scheinert ◽  
Christoph Mayer ◽  
Benjamin Ebermann ◽  
...  

Abstract. Harald Moltke Bræ, a marine-terminating glacier in north-west Greenland, shows episodic surges. A recent surge from 2013 to 2019 lasted significantly longer (6 years) than previously observed surges (2–4 years) and exhibits a pronounced seasonality with flow velocities varying by one order of magnitude (between about 0.5 and 10 m/day) in the course of a year. During this six-year period, the velocity always peaked in the early melt season and decreased abruptly when meltwater runoff was maximum. Our data suggest that the seasonality has been similar during previous surges, and, to a much lesser extent, during the intermediate quiescent phases. It is peculiar to Harald Moltke Bræ that the seasonal amplitude is amplified episodically to constitute glacier surges. The surge from 2013 to 2019 was preceded by a rapid frontal retreat and a pronounced thinning at the glacier front (30 m within 3 years). We discuss possible causal mechanisms of the seasonally modulated surge behaviour by involving various system inherent factors (e.g. glacier geometry) and external factors (e.g. surface mass balance). The seasonality may be caused by a transition of an inefficient subglacial system to an efficient one, as known for many glaciers in Greenland. The patterns of flow velocity and ice thickness variations indicate that the surges are initiated at the terminus and develop through an up-glacier propagation of ice flow acceleration. Possibly, this is facilitated by a simultaneous up-glacier spreading of surface crevasses and weakening of subglacial till. Once a large part of the ablation zone has accelerated, conditions may favour substantial seasonal flow acceleration through seasonally changing meltwater availability. Thus the seasonal amplitude remains high for two or more years until the fast ice flow has flattened the ice surface and the glacier stabilizes again.


1999 ◽  
Vol 45 (150) ◽  
pp. 384-393 ◽  
Author(s):  
C. Mayer ◽  
P. Huybrechts

AbstractA detailed investigation was performed of ice-dynamic conditions across the southern grounding zone of Ekströmisen, at the mouth of a regular East Antarctic outlet glacier not characterized by ice-streaming. Accurate field measurements along a profile 20 km long served as input in a two-dimensional numerical ice-flow model in order to calculate the variation of stress, strain rate and velocity with depth. The model results point to a sharp transition between the mechanics of grounded and floating ice, with a transition zone of only a few km between the two. Vertical shear, most of it near the base, was found to be the dominant flow mechanism in grounded ice. This part is also characterized by a distinct succession of surface undulations which are in turn controlled by variations in resistive stresses at the bottom. The associated phase shift between driving stress and basal drag was found to be accommodated by differential longitudinal pushes and pulls at the base. The flow in the upper half of the profile, on the other hand, is extensive everywhere. The adjacent ice shelf is characterized by small stress and velocity gradients in both the vertical and horizontal directions of the vertical section, and therefore has little deformation. A derived longitudinal deviatoric normal stress of only one-tenth of the value required for freely floating ice shelves reflects a large back-stress originating from friction along the side-walls of the narrow embayment.


2021 ◽  
Vol 15 (7) ◽  
pp. 3355-3375
Author(s):  
Lukas Müller ◽  
Martin Horwath ◽  
Mirko Scheinert ◽  
Christoph Mayer ◽  
Benjamin Ebermann ◽  
...  

Abstract. Harald Moltke Bræ, a marine-terminating glacier in north-western Greenland, shows episodic surges. A recent surge from 2013 to 2019 lasted significantly longer (6 years) than previously observed surges (2–4 years) and exhibits a pronounced seasonality with flow velocities varying by 1 order of magnitude (between about 0.5 and 10 m d−1) in the course of a year. During this 6-year period, the seasonal velocity always peaked in the early melt season and decreased abruptly when meltwater runoff was maximum. Our data suggest that the seasonality has been similar during previous surges. Furthermore, the analysis of satellite images and digital elevation models shows that the surge from 2013 to 2019 was preceded by a rapid frontal retreat and a pronounced thinning at the glacier front (30 m within 3 years). We discuss possible causal mechanisms of the seasonally modulated surge behaviour by examining various system-inherent factors (e.g. glacier geometry) and external factors (e.g. surface mass balance). The seasonality may be caused by a transition of an inefficient subglacial system to an efficient one, as known for many glaciers in Greenland. The patterns of flow velocity and ice thickness variations indicate that the surges are initiated at the terminus and develop through an up-glacier propagation of ice flow acceleration. Possibly, this is facilitated by a simultaneous up-glacier spreading of surface crevasses and weakening of subglacial till. Once a large part of the ablation zone has accelerated, conditions may favour substantial seasonal flow acceleration through seasonally changing meltwater availability. Thus, the seasonal amplitude remains high for 2 or more years until the fast ice flow has flattened the ice surface and the glacier stabilizes again.


2014 ◽  
Vol 55 (66) ◽  
pp. 45-51 ◽  
Author(s):  
Chunxia Zhou ◽  
Yu Zhou ◽  
Fanghui Deng ◽  
Songtao AI ◽  
Zemin Wang ◽  
...  

AbstractWe present a study of seasonal and interannual ice velocity changes at Polar Record Glacier, East Antarctica, using ERS-1/2, Envisat and PALSAR data with D-InSAR and intensity tracking. Ice flow showed seasonal variations at the front of the glacier tongue. Velocities in winter were 19% less than velocities during summer. No significant interannual changes were detected. Ice velocities in the grounding zone and grounded glacier did not show clear seasonal or interannual changes. The distribution of the seasonal variations suggests that the cause for the changes should be localized. Possible causes are seasonal sea-ice changes and iceberg blocking. Satellite images show that the sea ice surrounding Polar Record Glacier undergoes seasonal changes. Frozen sea ice in winter slowed the huge iceberg, and provided increased resistance to the glacier flow. The interaction between the glacier tongue, iceberg and sea ice significantly influences their flow pattern.


Sign in / Sign up

Export Citation Format

Share Document