Palynology of the Ordovician Kanosh Shale at Fossil Mountain, Utah

2015 ◽  
Vol 89 (3) ◽  
pp. 424-447 ◽  
Author(s):  
Marco Vecoli ◽  
John H. Beck ◽  
Paul K. Strother

AbstractPalynomorph assemblages recovered from the Kanosh Shale at Fossil Mountain, Utah, are dominated by operculate acritarchs and cryptospores with minor smaller acritarchs. The present findings add new data to the largely incomplete knowledge of Ordovician acritarch assemblages from Laurentia, up to now known only from very few localities in North America. These populations contain some species in common with acritarchs from the Canning and Georgina basins in Australia and with assemblages from China; they indicate a Middle Ordovician (Dapingian-Darriwilian) age. The assemblage is lacking many typical marine acritarchs of this age, which, in combination with some cryptospores, is probably reflecting the likelihood of freshwater influence in the Kanosh Basin. This observation is congruent with previous interpretations of the depositional setting of the Kanosh Shale as a shallow water lagoon that supported the deposition of carbonate hardgrounds.Four new taxa are described: Busphaeridium vermiculatum n. gen., n. sp.; Digitoglomus minutum n. gen., n. sp.; Turpisphaera heteromorpha n. gen., n. sp.; and Vermimarginata barbata n. gen., n. sp. In addition, the abundance of operculate forms has enabled the revision and a new emendation of the genus Dicommopalla and clarification of the “opalla” complex. We also propose new and revised suprageneric taxa that emphasize inferred biological differences among acritarch genera. The Sphaeromorphitae subgroup is emended to include forms lacking sculptural elements. Two new informal subgroups are proposed: the Superornamenti and the Operculate Acritarchs. Cryptospores are abundant throughout the sections studied and they appear to be more closely related to the late Cambrian Agamachates Taylor and Strother than to Darriwilian and younger Ordovician cryptospores from Gondwana.

2011 ◽  
Vol 48 (5) ◽  
pp. 841-859 ◽  
Author(s):  
Jörg Maletz ◽  
Sven Egenhoff ◽  
Martina Böhme ◽  
Robert Asch ◽  
Katarina Borowski ◽  
...  

Ordovician graptolite faunal compositions between the Laurentia and Baltica margins of the Iapetus Ocean differ considerably in the upper Darriwilian (Da 3 – Da 4; upper Middle Ordovician). Detailed investigation of a number of sections in the Table Head and Goose Tickle groups in western Newfoundland and the Elnes Formation of Norway provides important new faunal data for the interval from the Holmograptus lentus Biozone to the Dicellograptus vagus Biozone. The Nicholsonograptus fasciculatus and Pterograptus elegans biozones are introduced for the Table Head and Goose Tickle groups and can be recognized widely in North America. The characteristic, but poorly correlatable, shallow-water endemic faunas of the platform regions (Atlantic and Pacific faunal realms) grade into the cosmopolitan oceanic graptolite faunas (isograptid biofacies) and provide a means to precisely correlate cold-water and warm-water endemic graptolite faunas through transitional zones. The faunal differences between western Newfoundland and Scandinavia are less pronounced than hitherto assumed, and many faunal elements can now be recognized in both regions, allowing for a more precise biostratigraphic correlation. The paleobiogeographic differentiation of both regions has been based on few, but usually extremely common faunal elements, masking the presence of important biostratigraphic marker species.


1994 ◽  
Vol 68 (2) ◽  
pp. 324-338 ◽  
Author(s):  
James Sprinkle ◽  
Gregory P. Wahlman

Four specimens of blastozoan and crinozoan echinoderms are described from the Lower Ordovician El Paso Group in the southern Franklin Mountains just north of El Paso, west Texas.Cuniculocystis flowerin. gen. and sp., based on two partial specimens, appears to be a typical rhombiferan in most of its morphologic features except that it lacks pectinirhombs and instead has covered epispires (otherwise known only from Middle Ordovician eocrinoids) opening on most of the thecal plate sutures. The covered epispires inCuniculocystisindicate that some early rhombiferans had alternate respiratory structures and had not yet standardized on pectinirhombs, a feature previously used as diagnostic for the class Rhombifera.Bockia?elpasoensisn. sp. is a new eocrinoid based on one poorly preserved specimen that has a small ellipsoidal theca and unbranched brachioles attached to a flat-topped spoutlike summit. It is the earliest known questionable representative of this genus and the only one that has been described from North America.Elpasocrinus radiatusn. gen. and sp. is an early cladid inadunate crinoid based on a single well-preserved calyx. It fits into a lineage of early cladids leading to the dendrocrinids and toCarabocrinus.Several additional separate plates, stem segments, and a holdfast of these and other echinoderms are also described.


1991 ◽  
Vol 65 (2) ◽  
pp. 200-212 ◽  
Author(s):  
Marcus M. Key

The Bromide Formation of the Middle Ordovician Simpson Group of Oklahoma contains one of the oldest diverse bryozoan faunas in North America. The early divergence of many trepostome clades is revealed in these rocks. Three trepostome bryozoan species belonging to family Halloporidae are described from this fauna. Discriminant analysis is used to define the following halloporid species: Diplotrypa schindeli n. sp., Tarphophragma karklinsi n. sp., and Tarphophragma macrostoma (Loeblich). Preliminary cladistic analysis indicates that the family Halloporidae was already a distinct lineage by the Middle Ordovician. This suggests that by this time, many of the major trepostome clades were already established.


1986 ◽  
Vol 132 ◽  
pp. 27-37
Author(s):  
J.R Ineson ◽  
J.S Peel ◽  
M.P Smith

The name Sjælland Fjelde Formation is introduced for a varied sequence of shallow-water platform dolomites and dolomitic limestones, about 105 m in thickness, in Kronprins Christian Land, eastern North Greenland. The new formation lies between the previously described Wandel Valley and Børglum River Formations. Conodont faunas indicate that the Sjælland Fjelde Formation is of Middle to earliest Late Whiterockian (early Middle Ordovician) age and that it can be eorrelated with the upper part of the Wandel Valley Formation of Peary Land to the north-west.


2016 ◽  
Vol 154 (5) ◽  
pp. 1001-1021 ◽  
Author(s):  
STEPHEN R. WESTROP ◽  
ED LANDING

AbstractNew and archival collections from the Chelsey Drive Group of the Avalon terrane of Cape Breton Island, Nova Scotia, Canada, yield late Cambrian trilobites and agnostoid arthropods with full convexity that contrast with compacted, often deformed material from shale and slate typical of Avalonian Britain. Four species of the agnostoid Lotagnostus form a stratigraphic succession in the upper Furongian (Ctenopyge tumida–Parabolina lobata zones). Two species, L. ponepunctus (Matthew, 1901) and L. germanus (Matthew, 1901) are previously named; L. salteri and L. matthewi are new. Lotagnostus trisectus (Salter, 1864), the type species of the genus, is restricted to compacted material from its type area in Malvern, England. Lotagnostus americanus (Billings, 1860) has been proposed as a globally appropriate index for the base of ‘Stage 10’ of the Cambrian. All four species from Avalonian Canada are differentiated clearly from L. americanus in its type area in Laurentian North America (i.e., from debris flow blocks in Taconian Quebec). In our view, putative occurrences of L. americanus from other Cambrian continents record very different species. Lotagnostus americanus cannot be recognized worldwide, and other taxa should be sought to define the base of Stage 10, such as the conodont Eoconodontus notchhpeakensis.


2009 ◽  
Vol 83 (5) ◽  
pp. 783-793 ◽  
Author(s):  
B. Senowbari-Daryan ◽  
G. D. Stanley

Stromatomorpha californica Smith is a massive, calcified, tropical to subtropical organism of the Late Triassic that produced small biostromes and contributed in building some reefs. It comes from the displaced terranes of Cordilleran North America (Eastern Klamath terrane, Alexander terrane, and Wrangellia). This shallow-water organism formed small laminar masses and sometimes patch reefs. It was first referred to the order Spongiomorphidae but was considered to be a coral. Other affinities that have been proposed include hydrozoan, stomatoporoid, sclerosponge, and chambered sponge. Part of the problem was diagenesis that resulted in dissolution of the siliceous spicules and/or replaced them with calcite. Well-preserved dendroclone spicules found during study of newly discovered specimens necessitate an assignment of Stromatomorpha californica to the demosponge order Orchocladina Rauff. Restudy of examples from the Northern Calcareous Alps extends the distribution of this species to the Tethys, where it was an important secondary framework builder in Upper Triassic (Norian-Rhaetian) reef complexes. Revisions of Stromatomorpha californica produce much wider pantropical distribution, mirroring paleogeographic patterns revealed for other tropical Triassic taxa. Review of Liassic material from the Jurassic of Morocco, previously assigned to Stromatomorpha californica Smith var. columnaris Le Maitre, cannot be sustained. Species previously included in Stromatomorpha are: S. stylifera Frech (type species, Rhaetian), S. actinostromoides Boiko (Norian), S. californica Smith (Norian), S. concescui Balters (Ladinian-Carnian), S. pamirica Boiko (Norian), S. rhaetica Kühn (Rhaetian), S. stromatoporoides Frech, and S. tenuiramosa Boiko (Norian). Stromatomorpha rhaetica Kühn described from the Rhaetian of Vorarlberg, Austria shows no major difference from S. californica. An example described as S. oncescui Balters from the Ladinian-Carnian of the Rarau Mountains, Romania, is very similar to S. californica in exhibiting similar spicule types. However, because of the greater distance between individual pillars, horizontal layers, and the older age, S. oncescui is retained as a separate species. The net-like and regular skeleton of Spongiomorpha sanpozanensis Yabe and Sugiyama, from the Upper Triassic of Sambosan (Tosa, Japan), suggests a closer alliance with Stromatomorpha, and this taxon possibly could be the same as S. californica.


Sign in / Sign up

Export Citation Format

Share Document