freshwater influence
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 8)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 33 (4) ◽  
pp. 148-159
Author(s):  
Hye Min Lee ◽  
Jin Il Song ◽  
Jong Wook Kim ◽  
Jae Yoon Choi ◽  
Byung Il Yoon ◽  
...  

This study estimates the region of freshwater influence (ROFI) by Han River discharge in the Yeomha channel, Gyeonggi Bay. A 3-D numerical model, which is validated for reproducibility of variation in current velocity and salinity, is applied in Gyeonggi Bay. Distance of freshwater influence (DOFI) is defined as the distance from the entrance of Yeomha channel to the point where surface salinity is 28 psu. Model scenarios were constructed by dividing the Han River discharge into 10 categories (200~10,000 m3/s). The relation equation between freshwater discharge and DOFI was calculated based on performing a non-linear regression analysis. ROFI in Yeomha channel expands from the southern sea area of Ganghwa-do to the northern sea area of Yeongheung- do as the intensity of Han River discharge increases. The discharge and DOFI are a proportional relationship, and the increase rate of DOFI gradually decreases as discharge increases. Based on the relation equation calculated in this study, DOFI in the Yeomha channel can be estimated through the monthly mean Han River discharge. Accordingly, it will be possible to respond and predict problems related to damage to water quality and ecology due to rapid freshwater runoff.


Author(s):  
Sabine Rijnsburger ◽  
Raúl P. Flores ◽  
Julie D. Pietrzak ◽  
Alexander R. Horner‐Devine ◽  
Alejandro J. Souza ◽  
...  
Keyword(s):  

2020 ◽  
Vol 7 ◽  
Author(s):  
Markus A. Janout ◽  
Jens Hölemann ◽  
Georgi Laukert ◽  
Alexander Smirnov ◽  
Thomas Krumpen ◽  
...  

In this paper, we investigate the seasonal and spatial variability of stratification on the Siberian shelves with a case study from the Laptev Sea based on shipboard hydrographic measurements, year-round oceanographic mooring records from 2013 to 2014 and chemical tracer-based water mass analyses. In summer 2013, weak onshore-directed winds caused spreading of riverine waters throughout much of the eastern and central shelf. In contrast, strong southerly winds in summer 2014 diverted much of the freshwater to the northeast, which resulted in 50% less river water and significantly weaker stratification on the central shelf compared with the previous year. Our year-long records additionally emphasize the regional differences in water column structure and stratification, where the northwest location was well-mixed for 6 months and the central and northeast locations remained stratified into spring due to the lower initial surface salinities of the river-influenced water. A 26 year record of ocean reanalysis highlights the region’s interannual variability of stratification and its dependence on winds and sea ice. Prior the mid-2000s, river runoff to the perennially ice-covered central Laptev Sea shelf experienced little surface forcing and river water was maintained on the shelf. The transition toward less summer sea ice after the mid-2000s increased the ROFI’s (region of freshwater influence) exposure to summer winds. This greatly enhanced the variability in mixed layer depth, resulting in several years with well-mixed water columns as opposed to the often year-round shallow mixed layers before. The extent of the Lena River plume is critical for the region since it modulates nutrient fluxes and primary production, and further controls intermediate heat storage induced by lateral density gradients, which has implications for autumnal freeze-up and the eastern Arctic sea ice volume.MAIN POINTS1.CTD surveys and moorings highlight the regional and temporal variations in water column stratification on the Laptev Sea shelf.2.Summer winds increasingly control the extent of the region of freshwater influence under decreasing sea ice.3.Further reductions in sea ice increases surface warming, heat storage, and the interannual variability in mixed layer depth.


2020 ◽  
Vol 50 (5) ◽  
pp. 1265-1287
Author(s):  
Raúl P. Flores ◽  
Sabine Rijnsburger ◽  
Alexander R. Horner-Devine ◽  
Nirnimesh Kumar ◽  
Alejandro J. Souza ◽  
...  

AbstractThis study investigates the influence of tidal straining in the generation of turbidity maximum zones (TMZ), which are observed to extend for tens of kilometers along some shallow, open coastal seas. Idealized numerical simulations are conducted to reproduce the cross-shore dynamics and tidal straining in regions of freshwater influence (ROFIs), where elliptical current patterns are generated by the interaction between stratification and a tidal Kelvin wave. Model results show that tidal straining leads to cross-shore sediment convergence and the formation of a nearshore TMZ that is detached from the coastline. The subtidal landward sediment fluxes are created by asymmetries in vertical mixing between the stratifying and destratifying phases of the tidal cycle. This process is similar to the tidal straining mechanism that is observed in estuaries, except that in this case the convergence zone and TMZ are parallel to the shoreline and perpendicular to both the direction of the freshwater flux and the major axis of the tidal flow. We introduce the term minor axis tidal straining (MITS) to describe the tidal straining in these systems and to differentiate it from the tidal straining that occurs when the major axis of the tidal ellipse is aligned with the density gradient. The occurrence of tidal straining and the coastal TMZ is predicted in terms of the Simpson (Si) and Stokes (Stk) numbers, and top–bottom tidal ellipticity difference (Δε). Based on our results, we find that SiStk2 > 3 and Δε > 0.5 provide a limiting condition for the required density gradients and latitudes for the occurrence of MITS and the generation of a TMZ.


Radiocarbon ◽  
2018 ◽  
Vol 61 (1) ◽  
pp. 195-210 ◽  
Author(s):  
Víctor Merino-Campos ◽  
Ricardo De Pol-Holz ◽  
John Southon ◽  
Claudio Latorre ◽  
Silvana Collado-Fabbri

ABSTRACTWe present 37 new radiocarbon (14C) measurements from mollusk shells fragments sampled along the Chilean continental margin and stored in museum collections with known calendar age. These measurements were used to estimate the modern pre-bomb regional marine 14C age deviations from the global ocean reservoir (∆R). Together with previously published data, we calculated regional mean ∆R values for five oceanographic macro regions along the coast plus one for a mid-latitude open ocean setting. In general, upwelling regions north of 42ºS show consistent although sometimes highly variable ∆R values with regional averages ranging from 141 to 196 14C yr, whereas the mid-latitude open ocean location of the Juan Fernández archipelago and the southern Patagonian region show minor, ∆R of 40±38 14C yr, and 52±47 14C yr respectively. We attribute the alongshore decreasing pattern toward higher latitudes to the main oceanographic features along the Chilean coast such as perennial coastal upwelling in northern zone, seasonally variable upwelling at the central part and the large freshwater influence upon the southern Patagonian channels.


Sign in / Sign up

Export Citation Format

Share Document