scholarly journals Nonergodic Jackson networks with infinite supply–local stabilization and local equilibrium analysis

2016 ◽  
Vol 53 (4) ◽  
pp. 1125-1142 ◽  
Author(s):  
Jennifer Sommer ◽  
Hans Daduna ◽  
Bernd Heidergott

Abstract Classical Jackson networks are a well-established tool for the analysis of complex systems. In this paper we analyze Jackson networks with the additional features that (i) nodes may have an infinite supply of low priority work and (ii) nodes may be unstable in the sense that the queue length at these nodes grows beyond any bound. We provide the limiting distribution of the queue length distribution at stable nodes, which turns out to be of product form. A key step in establishing this result is the development of a new algorithm based on adjusted traffic equations for detecting unstable nodes. Our results complement the results known in the literature for the subcases of Jackson networks with either infinite supply nodes or unstable nodes by providing an analysis of the significantly more challenging case of networks with both types of nonstandard node present. Building on our product-form results, we provide closed-form solutions for common customer and system oriented performance measures.


1984 ◽  
Vol 16 (1) ◽  
pp. 7-7
Author(s):  
William A. Massey

Using operator methods, we prove a general decomposition theorem for Jackson networks. For its transient joint queue-length distribution, we can stochastically bound it above by a network that decouples into smaller independent Jackson networks.



2008 ◽  
Vol 58 (3) ◽  
pp. 161-189 ◽  
Author(s):  
Ken’ichi Katou ◽  
Naoki Makimoto ◽  
Yukio Takahashi


1979 ◽  
Vol 11 (01) ◽  
pp. 240-255 ◽  
Author(s):  
Per Hokstad

The asymptotic behaviour of the M/G/2 queue is studied. The difference-differential equations for the joint distribution of the number of customers present and of the remaining holding times for services in progress were obtained in Hokstad (1978a) (for M/G/m). In the present paper it is found that the general solution of these equations involves an arbitrary function. In order to decide which of the possible solutions is the answer to the queueing problem one has to consider the singularities of the Laplace transforms involved. When the service time has a rational Laplace transform, a method of obtaining the queue length distribution is outlined. For a couple of examples the explicit form of the generating function of the queue length is obtained.



2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Siew Khew Koh ◽  
Ah Hin Pooi ◽  
Yi Fei Tan

Consider the single server queue in which the system capacity is infinite and the customers are served on a first come, first served basis. Suppose the probability density functionf(t)and the cumulative distribution functionF(t)of the interarrival time are such that the ratef(t)/1-F(t)tends to a constant ast→∞, and the rate computed from the distribution of the service time tends to another constant. When the queue is in a stationary state, we derive a set of equations for the probabilities of the queue length and the states of the arrival and service processes. Solving the equations, we obtain approximate results for the stationary probabilities which can be used to obtain the stationary queue length distribution and waiting time distribution of a customer who arrives when the queue is in the stationary state.



ETRI Journal ◽  
1994 ◽  
Vol 15 (3) ◽  
pp. 35-45 ◽  
Author(s):  
Kyu-Seok Lee ◽  
Hong Shik Park




2008 ◽  
Vol 40 (2) ◽  
pp. 548-577 ◽  
Author(s):  
David Gamarnik ◽  
Petar Momčilović

We consider a multiserver queue in the Halfin-Whitt regime: as the number of serversngrows without a bound, the utilization approaches 1 from below at the rateAssuming that the service time distribution is lattice valued with a finite support, we characterize the limiting scaled stationary queue length distribution in terms of the stationary distribution of an explicitly constructed Markov chain. Furthermore, we obtain an explicit expression for the critical exponent for the moment generating function of a limiting stationary queue length. This exponent has a compact representation in terms of three parameters: the amount of spare capacity and the coefficients of variation of interarrival and service times. Interestingly, it matches an analogous exponent corresponding to a single-server queue in the conventional heavy-traffic regime.



1994 ◽  
Vol 31 (03) ◽  
pp. 635-645
Author(s):  
Guang-Hui Hsu ◽  
Xue-Ming Yuan

The algorithm for the transient solution for the denumerable state Markov process with an arbitrary initial distribution is given in this paper. The transient queue length distribution for a general Markovian queueing system can be obtained by this algorithm. As examples, some numerical results are presented.



2005 ◽  
Vol 42 (01) ◽  
pp. 199-222 ◽  
Author(s):  
Yutaka Sakuma ◽  
Masakiyo Miyazawa

We consider a two-node Jackson network in which the buffer of node 1 is truncated. Our interest is in the limit of the tail decay rate of the queue-length distribution of node 2 when the buffer size of node 1 goes to infinity, provided that the stability condition of the unlimited network is satisfied. We show that there can be three different cases for the limit. This generalizes some recent results obtained for the tandem Jackson network. Special cases and some numerical examples are also presented.



1990 ◽  
Vol 27 (02) ◽  
pp. 401-408
Author(s):  
Nico M. Van Dijk ◽  
Eric Smeitink

We study a queueing system with a finite number of input sources. Jobs are individually generated by a source but wait to be served in batches, during which the input of that source is stopped. The service speed of a server depends on the mode of other sources and thus includes interdependencies. The input and service times are allowed to be generally distributed. A classical example is a machine repair system where the machines are subject to shocks causing cumulative damage. A product-form expression is obtained for the steady state joint queue length distribution and shown to be insensitive (i.e. to depend on only mean input and service times). The result is of both practical and theoretical interest as an extension of more standard batch service systems.



Sign in / Sign up

Export Citation Format

Share Document