LARGE CARDINALS AND LIGHTFACE DEFINABLE WELL-ORDERS, WITHOUT THE GCH

2015 ◽  
Vol 80 (1) ◽  
pp. 251-284
Author(s):  
SY-DAVID FRIEDMAN ◽  
PETER HOLY ◽  
PHILIPP LÜCKE

AbstractThis paper deals with the question whether the assumption that for every inaccessible cardinal κ there is a well-order of H(κ+) definable over the structure $\langle {\rm{H}}({\kappa ^ + }), \in \rangle$ by a formula without parameters is consistent with the existence of (large) large cardinals and failures of the GCH. We work under the assumption that the SCH holds at every singular fixed point of the ℶ-function and construct a class forcing that adds such a well-order at every inaccessible cardinal and preserves ZFC, all cofinalities, the continuum function, and all supercompact cardinals. Even in the absence of a proper class of inaccessible cardinals, this forcing produces a model of “V = HOD” and can therefore be used to force this axiom while preserving large cardinals and failures of the GCH. As another application, we show that we can start with a model containing an ω-superstrong cardinal κ and use this forcing to build a model in which κ is still ω-superstrong, the GCH fails at κ and there is a well-order of H(κ+) that is definable over H(κ+) without parameters. Finally, we can apply the forcing to answer a question about the definable failure of the GCH at a measurable cardinal.

1985 ◽  
Vol 50 (2) ◽  
pp. 531-543 ◽  
Author(s):  
Arthur W. Apter

A very fruitful line of research in recent years has been the application of techniques in large cardinals and forcing to the production of models in which certain consequences of the axiom of determinateness (AD) are true or in which certain “AD-like” consequences are true. Numerous results have been published on this subject, among them the papers of Bull and Kleinberg [4], Bull [3], Woodin [15], Mitchell [11], and [1], [2].Another such model will be constructed in this paper. Specifically, the following theorem is proven.Theorem 1. Con(ZFC + There are cardinals κ < δ < λ so that κ is a supercompact limit of supercompact cardinals, λ is a measurable cardinal, and δ is λ supercompact) ⇒ Con(ZF + ℵ1 and ℵ2 are Ramsey cardinals + The ℵn for 3 ≤ n ≤ ω are singular cardinals of cofinality ω each of which carries a Rowbottom filter + ℵω + 1 is a Ramsey cardinal + ℵω + 2 is a measurable cardinal).It is well known that under AD + DC, ℵ2 and ℵ2 are measurable cardinals, the ℵn for 3 ≤ n < ω are singular Jonsson cardinals of cofinality ℵ2, ℵω is a Rowbottom cardinal, and ℵω + 1 and ℵω + 2 are measurable cardinals.The proof of the above theorem will use the existence of normal ultrafilters which satisfy a certain property (*) (to be defined later) and an automorphism argument which draws upon the techniques developed in [9], [2], and [4] but which shows in addition that certain supercompact Prikry partial orderings are in a strong sense “homogeneous”. Before beginning the proof of the theorem, however, we briefly mention some preliminaries.


2014 ◽  
Vol 79 (01) ◽  
pp. 193-207 ◽  
Author(s):  
LAURA FONTANELLA

Abstract An inaccessible cardinal is strongly compact if, and only if, it satisfies the strong tree property. We prove that if there is a model of ZFC with infinitely many supercompact cardinals, then there is a model of ZFC where ${\aleph _{\omega + 1}}$ has the strong tree property. Moreover, we prove that every successor of a singular limit of strongly compact cardinals has the strong tree property.


1979 ◽  
Vol 44 (4) ◽  
pp. 563-565
Author(s):  
Carl F. Morgenstern

It is well known that the first strongly inaccessible cardinal is strictly less than the first weakly compact cardinal which in turn is strictly less than the first Ramsey cardinal, etc. However, once one passes the first measurable cardinal the inequalities are no longer strict. Magidor [3] has shown that the first strongly compact cardinal may be equal to the first measurable cardinal or equal to the first super-compact cardinal (the first supercompact cardinal is strictly larger than the first measurable cardinal). In this note we will indicate how Magidor's methods can be used to show that it is undecidable whether one cardinal (the first strongly compact) is greater than or less than another large cardinal (the first huge cardinal). We assume that the reader is familiar with the ultrapower construction of Scott, as presented in Drake [1] or Kanamori, Reinhardt and Solovay [2].Definition. A cardinal κ is huge (or 1-huge) if there is an elementary embedding j of the universe V into a transitive class M such that M contains the ordinals, is closed under j(κ) sequences, j(κ) > κ and j ↾ Rκ = id. Let κ denote the first huge cardinal, and let λ = j(κ).One can see from easy reflection arguments that κ and λ are inaccessible in V and, in fact, that κ is measurable in V.


2017 ◽  
Vol 82 (2) ◽  
pp. 549-575 ◽  
Author(s):  
CAROLIN ANTOS ◽  
SY-DAVID FRIEDMAN

AbstractIn this article we introduce and study hyperclass-forcing (where the conditions of the forcing notion are themselves classes) in the context of an extension of Morse-Kelley class theory, called MK**. We define this forcing by using a symmetry between MK** models and models of ZFC− plus there exists a strongly inaccessible cardinal (called SetMK**). We develop a coding between β-models ${\cal M}$ of MK** and transitive models M+ of SetMK** which will allow us to go from ${\cal M}$ to M+ and vice versa. So instead of forcing with a hyperclass in MK** we can force over the corresponding SetMK** model with a class of conditions. For class-forcing to work in the context of ZFC− we show that the SetMK** model M+ can be forced to look like LK*[X], where κ* is the height of M+, κ strongly inaccessible in M+ and $X \subseteq \kappa$. Over such a model we can apply definable class forcing and we arrive at an extension of M+ from which we can go back to the corresponding β-model of MK**, which will in turn be an extension of the original ${\cal M}$. Our main result combines hyperclass forcing with coding methods of [3] and [4] to show that every β-model of MK** can be extended to a minimal such model of MK** with the same ordinals. A simpler version of the proof also provides a new and analogous minimality result for models of second-order arithmetic.


Author(s):  
E. R. Reifenberg

Suppose I is a bounded plane continuum whose complement is a single domain (I) and that is a (1–1) bicontinuous transformation of the plane onto itself which leaves I invariant. Cartwright and Littlewood(1) have proved the following theorem:Theorem A. Suppose that(I) has no prime end fixed underand the frontier of I contains a fixed point P. Ifis any prime end of(I) containing P, and C is any curve in(I) converging tosuch that PeC¯, the closure of C, then for some‡ integer N the continuum I(FN) consisting oftogether with the sum B(FN) of its interior complementary domains contains all fixed points in I.


2019 ◽  
Vol 84 (3) ◽  
pp. 895-928
Author(s):  
MIHA E. HABIČ

AbstractThe concept of jointness for guessing principles, specifically ${\diamondsuit _\kappa }$ and various Laver diamonds, is introduced. A family of guessing sequences is joint if the elements of any given sequence of targets may be simultaneously guessed by the members of the family. While equivalent in the case of ${\diamondsuit _\kappa }$, joint Laver diamonds are nontrivial new objects. We give equiconsistency results for most of the large cardinals under consideration and prove sharp separations between joint Laver diamonds of different lengths in the case of θ-supercompact cardinals.


2016 ◽  
Vol 81 (3) ◽  
pp. 1047-1068 ◽  
Author(s):  
SY-DAVID FRIEDMAN ◽  
RADEK HONZIK

AbstractLet M be a transitive model of ZFC. We say that a transitive model of ZFC, N, is an outer model of M if M ⊆ N and ORD ∩ M = ORD ∩ N. The outer model theory of M is the collection of all formulas with parameters from M which hold in all outer models of M (which exist in a universe in which M is countable; this is independent of the choice of such a universe). Satisfaction defined with respect to outer models can be seen as a useful strengthening of first-order logic. Starting from an inaccessible cardinal κ, we show that it is consistent to have a transitive model M of ZFC of size κ in which the outer model theory is lightface definable, and moreover M satisfies V = HOD. The proof combines the infinitary logic L∞,ω, Barwise’s results on admissible sets, and a new forcing iteration of length strictly less than κ+ which manipulates the continuum function on certain regular cardinals below κ. In the appendix, we review some unpublished results of Mack Stanley which are directly related to our topic.


2006 ◽  
Vol 71 (3) ◽  
pp. 1029-1043 ◽  
Author(s):  
Natasha Dobrinen ◽  
Sy-David Friedman

AbstractThis paper investigates when it is possible for a partial ordering ℙ to force Pk(Λ)\V to be stationary in Vℙ. It follows from a result of Gitik that whenever ℙ adds a new real, then Pk(Λ)\V is stationary in Vℙ for each regular uncountable cardinal κ in Vℙ and all cardinals λ ≥ κ in Vℙ [4], However, a covering theorem of Magidor implies that when no new ω-sequences are added, large cardinals become necessary [7]. The following is equiconsistent with a proper class of ω1-Erdős cardinals: If ℙ is ℵ1-Cohen forcing, then Pk(Λ)\V is stationary in Vℙ, for all regular κ ≥ ℵ2and all λ ≩ κ. The following is equiconsistent with an ω1-Erdős cardinal: If ℙ is ℵ1-Cohen forcing, then is stationary in Vℙ. The following is equiconsistent with κ measurable cardinals: If ℙ is κ-Cohen forcing, then is stationary in Vℙ.


2021 ◽  
pp. 103013
Author(s):  
Arthur W. Apter ◽  
Stamatis Dimopoulos ◽  
Toshimichi Usuba

Sign in / Sign up

Export Citation Format

Share Document