scholarly journals MORE ON THE PRESERVATION OF LARGE CARDINALS UNDER CLASS FORCING

2021 ◽  
pp. 1-38
Author(s):  
JOAN BAGARIA ◽  
ALEJANDRO POVEDA
2008 ◽  
Vol 73 (4) ◽  
pp. 1215-1248 ◽  
Author(s):  
Thomas A. Johnstone

AbstractI provide indestructibility results for large cardinals consistent with V = L, such as weakly compact, indescribable and strongly unfoldable cardinals. The Main Theorem shows that any strongly unfoldable cardinal κ can be made indestructible by <κ-closed, κ-proper forcing. This class of posets includes for instance all <κ-closed posets that are either κ−-c.c. or <κ-strategically closed as well as finite iterations of such posets. Since strongly unfoldable cardinals strengthen both indescribable and weakly compact cardinals, the Main Theorem therefore makes these two large cardinal notions similarly indestructible. Finally. I apply the Main Theorem to obtain a class forcing extension preserving all strongly unfoldable cardinals in which every strongly unfoldable cardinal κ is indestructible by <κ-closed, κ-proper forcing.


2015 ◽  
Vol 80 (1) ◽  
pp. 251-284
Author(s):  
SY-DAVID FRIEDMAN ◽  
PETER HOLY ◽  
PHILIPP LÜCKE

AbstractThis paper deals with the question whether the assumption that for every inaccessible cardinal κ there is a well-order of H(κ+) definable over the structure $\langle {\rm{H}}({\kappa ^ + }), \in \rangle$ by a formula without parameters is consistent with the existence of (large) large cardinals and failures of the GCH. We work under the assumption that the SCH holds at every singular fixed point of the ℶ-function and construct a class forcing that adds such a well-order at every inaccessible cardinal and preserves ZFC, all cofinalities, the continuum function, and all supercompact cardinals. Even in the absence of a proper class of inaccessible cardinals, this forcing produces a model of “V = HOD” and can therefore be used to force this axiom while preserving large cardinals and failures of the GCH. As another application, we show that we can start with a model containing an ω-superstrong cardinal κ and use this forcing to build a model in which κ is still ω-superstrong, the GCH fails at κ and there is a well-order of H(κ+) that is definable over H(κ+) without parameters. Finally, we can apply the forcing to answer a question about the definable failure of the GCH at a measurable cardinal.


2021 ◽  
Vol 172 (2) ◽  
pp. 102889
Author(s):  
Peter Holy ◽  
Philipp Lücke
Keyword(s):  

2004 ◽  
Vol 69 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Sy D. Friedman

In this article we study the strength of absoluteness (with real parameters) in various types of generic extensions, correcting and improving some results from [3]. (In particular, see Theorem 3 below.) We shall also make some comments relating this work to the bounded forcing axioms BMM, BPFA and BSPFA.The statement “ absoluteness holds for ccc forcing” means that if a formula with real parameters has a solution in a ccc set-forcing extension of the universe V, then it already has a solution in V. The analogous definition applies when ccc is replaced by other set-forcing notions, or by class-forcing.Theorem 1. [1] absoluteness for ccc has no strength; i.e., if ZFC is consistent then so is ZFC + absoluteness for ccc.The following results concerning (arbitrary) set-forcing and class-forcing can be found in [3].Theorem 2 (Feng-Magidor-Woodin). (a) absoluteness for arbitrary set-forcing is equiconsistent with the existence of a reflecting cardinal, i.e., a regular cardinal κ such that H(κ) is ∑2-elementary in V.(b) absoluteness for class-forcing is inconsistent.We consider next the following set-forcing notions, which lie strictly between ccc and arbitrary set-forcing: proper, semiproper, stationary-preserving and ω1-preserving. We refer the reader to [8] for the definitions of these forcing notions.Using a variant of an argument due to Goldstern-Shelah (see [6]), we show the following. This result corrects Theorem 2 of [3] (whose proof only shows that if absoluteness holds in a certain proper forcing extension, then in L either ω1 is Mahlo or ω2 is inaccessible).


1996 ◽  
Vol 2 (1) ◽  
pp. 94-107 ◽  
Author(s):  
Greg Hjorth

§0. Preface. There has been an expectation that the endgame of the more tenacious problems raised by the Los Angeles ‘cabal’ school of descriptive set theory in the 1970's should ultimately be played out with the use of inner model theory. Questions phrased in the language of descriptive set theory, where both the conclusions and the assumptions are couched in terms that only mention simply definable sets of reals, and which have proved resistant to purely descriptive set theoretic arguments, may at last find their solution through the connection between determinacy and large cardinals.Perhaps the most striking example was given by [24], where the core model theory was used to analyze the structure of HOD and then show that all regular cardinals below ΘL(ℝ) are measurable. John Steel's analysis also settled a number of structural questions regarding HODL(ℝ), such as GCH.Another illustration is provided by [21]. There an application of large cardinals and inner model theory is used to generalize the Harrington-Martin theorem that determinacy implies )determinacy.However, it is harder to find examples of theorems regarding the structure of the projective sets whose only known proof from determinacy assumptions uses the link between determinacy and large cardinals. We may equivalently ask whether there are second order statements of number theory that cannot be proved under PD–the axiom of projective determinacy–without appealing to the large cardinal consequences of the PD, such as the existence of certain kinds of inner models that contain given types of large cardinals.


2009 ◽  
Vol 159 (1-2) ◽  
pp. 71-99 ◽  
Author(s):  
Andrew D. Brooke-Taylor ◽  
Sy-David Friedman
Keyword(s):  

2006 ◽  
Vol 71 (3) ◽  
pp. 1029-1043 ◽  
Author(s):  
Natasha Dobrinen ◽  
Sy-David Friedman

AbstractThis paper investigates when it is possible for a partial ordering ℙ to force Pk(Λ)\V to be stationary in Vℙ. It follows from a result of Gitik that whenever ℙ adds a new real, then Pk(Λ)\V is stationary in Vℙ for each regular uncountable cardinal κ in Vℙ and all cardinals λ ≥ κ in Vℙ [4], However, a covering theorem of Magidor implies that when no new ω-sequences are added, large cardinals become necessary [7]. The following is equiconsistent with a proper class of ω1-Erdős cardinals: If ℙ is ℵ1-Cohen forcing, then Pk(Λ)\V is stationary in Vℙ, for all regular κ ≥ ℵ2and all λ ≩ κ. The following is equiconsistent with an ω1-Erdős cardinal: If ℙ is ℵ1-Cohen forcing, then is stationary in Vℙ. The following is equiconsistent with κ measurable cardinals: If ℙ is κ-Cohen forcing, then is stationary in Vℙ.


Sign in / Sign up

Export Citation Format

Share Document