Letter Games: a metamathematical taster

2016 ◽  
Vol 100 (549) ◽  
pp. 442-449
Author(s):  
A. C. Paseau

Metamathematics is the mathematical study of mathematics itself. Two of its most famous theorems were proved by Kurt Gödel in 1931. In a simplified form, Gödel's first incompleteness theorem states that no reasonable mathematical system can prove all the truths of mathematics. Gödel's second incompleteness theorem (also simplified) in turn states that no reasonable mathematical system can prove its own consistency. Another famous undecidability theorem is that the Continuum Hypothesis is neither provable nor refutable in standard set theory. Many of us logicians were first attracted to the field as students because we had heard something of these results. All research mathematicians know something of them too, and have at least a rough sense of why ‘we can't prove everything we want to prove’.

1978 ◽  
Vol 43 (3) ◽  
pp. 613-613 ◽  
Author(s):  
Stephen C. Kleene

Gödel has called to my attention that p. 773 is misleading in regard to the discovery of the finite axiomatization and its place in his proof of the consistency of GCH. For the version in [1940], as he says on p. 1, “The system Σ of axioms for set theory which we adopt [a finite one] … is essentially due to P. Bernays …”. However, it is not at all necessary to use a finite axiom system. Gödel considers the more suggestive proof to be the one in [1939], which uses infinitely many axioms.His main achievement regarding the consistency of GCH, he says, really is that he first introduced the concept of constructible sets into set theory defining it as in [1939], proved that the axioms of set theory (including the axiom of choice) hold for it, and conjectured that the continuum hypothesis also will hold. He told these things to von Neumann during his stay at Princeton in 1935. The discovery of the proof of this conjecture On the basis of his definition is not too difficult. Gödel gave the proof (also for GCH) not until three years later because he had fallen ill in the meantime. This proof was using a submodel of the constructible sets in the lowest case countable, similar to the one commonly given today.


Author(s):  
John P. Burgess

the ‘universe’ of constructible sets was introduced by Kurt Gödel in order to prove the consistency of the axiom of choice (AC) and the continuum hypothesis (CH) with the basic (ZF) axioms of set theory. The hypothesis that all sets are constructible is the axiom of constructibility (V = L). Gödel showed that if ZF is consistent, then ZF + V = L is consistent, and that AC and CH are provable in ZF + V = L.


Author(s):  
Mr. Lam Kai Shun

The continuum hypothesis has been unsolved for hundreds of years. In other words, can I answer it completely? By refuting the culturally responsible continuum [1], one can link the problem to the mathematical continuum, and it is possible to disproof the continuum hypothesis [2] . To go ahead a step, one may extend our mathematical system (by employing a more powerful set theory) and solve the continuum problem by three conditional cases. This event is sim-ilar to the status cases in the discriminant of solving a quadratic equation. Hence, my proposed al-gorithmic flowchart can best settle and depict the problem. From the above, one can further con-clude that when people extend mathematics (like set theory — ZFC) into new systems (such as Force Axioms), experts can solve important mathematical problems (CH). Indeed, there are differ-ent types of such mathematical systems, similar to ancient mathematical notation. Hence, different cultures have different ways of representation, which is similar to a Chinese saying: “different vil-lages have different laws.” However, the primary purpose of mathematical notation was initially to remember and communicate. This event indicates that the basic purpose of developing any new mathematical system is to help solve a natural phenomenon in our universe.


2007 ◽  
Vol 13 (2) ◽  
pp. 153-188 ◽  
Author(s):  
Akihiro Kanamori

Kurt Gödel (1906–1978) with his work on the constructible universeLestablished the relative consistency of the Axiom of Choice (AC) and the Continuum Hypothesis (CH). More broadly, he ensured the ascendancy of first-order logic as the framework and a matter of method for set theory and secured the cumulative hierarchy view of the universe of sets. Gödel thereby transformed set theory and launched it with structured subject matter and specific methods of proof. In later years Gödel worked on a variety of set theoretic constructions and speculated about how problems might be settled with new axioms. We here chronicle this development from the point of view of the evolution of set theory as a field of mathematics. Much has been written, of course, about Gödel's work in set theory, from textbook expositions to the introductory notes to his collected papers. The present account presents an integrated view of the historical and mathematical development as supported by his recently published lectures and correspondence. Beyond the surface of things we delve deeper into the mathematics. What emerges are the roots and anticipations in work of Russell and Hilbert, and most prominently the sustained motif of truth as formalizable in the “next higher system”. We especially work at bringing out how transforming Gödel's work was for set theory. It is difficult now to see what conceptual and technical distance Gödel had to cover and how dramatic his re-orientation of set theory was.


1995 ◽  
Vol 60 (2) ◽  
pp. 374-391 ◽  
Author(s):  
Haim Judah ◽  
Andrzej Rosłanowski

Since Georg Cantor discovered set theory the main problem in this area of mathematical research has been to discover what is the size of the continuum. The continuum hypothesis (CH) says that every infinite set of reals either has the same cardinality as the set of all reals or has the cardinality of the set of natural numbers, namelyIn 1939 Kurt Gödel discovered the Constructible Universe and proved that CH holds in it. In the early sixties Paul Cohen proved that every universe of set theory can be extended to a bigger universe of set theory where CH fails. Moreover, given any reasonable cardinal κ, it is possible to build a model where the continuum size is κ. The new technique discovered by Cohen is called forcing and is being used successfully in other branches of mathematics (analysis, algebra, graph theory, etc.).In the light of these two stupendous works the experts (especially the platonists) were forced to conclude that from the point of view of the classical axiomatization of set theory (called ZFC) it is impossible to give any answer to the continuum size problem: everything is possible!In private communications Gödel suggested that the continuum size from a platonistic point of view should be ω2, the second uncountable cardinal. As this is not provable in ZFC, Gödel suggested that a new axiom should be added to ZFC to decide that the cardinality of the continuum is ω2.


2005 ◽  
Vol 11 (2) ◽  
pp. 207-224 ◽  
Author(s):  
Donald A. Martin

Kurt Gödel is almost as famous—one might say “notorious”—for his extreme platonist views as he is famous for his mathematical theorems. Moreover his platonism is not a myth; it is well-documented in his writings. Here are two platonist declarations about set theory, the first from his paper about Bertrand Russell and the second from the revised version of his paper on the Continuum Hypotheses.Classes and concepts may, however, also be conceived as real objects, namely classes as “pluralities of things” or as structures consisting of a plurality of things and concepts as the properties and relations of things existing independently of our definitions and constructions.It seems to me that the assumption of such objects is quite as legitimate as the assumption of physical bodies and there is quite as much reason to believe in their existence.But, despite their remoteness from sense experience, we do have something like a perception also of the objects of set theory, as is seen from the fact that the axioms force themselves upon us as being true. I don't see any reason why we should have less confidence in this kind of perception, i.e., in mathematical intuition, than in sense perception.The first statement is a platonist declaration of a fairly standard sort concerning set theory. What is unusual in it is the inclusion of concepts among the objects of mathematics. This I will explain below. The second statement expresses what looks like a rather wild thesis.


1990 ◽  
Vol 55 (3) ◽  
pp. 1022-1036 ◽  
Author(s):  
Arnold W. Miller

AbstractIn this paper we ask the question: to what extent do basic set theoretic properties of Loeb measure depend on the nonstandard universe and on properties of the model of set theory in which it lies? We show that, assuming Martin's axiom and κ-saturation, the smallest cover by Loeb measure zero sets must have cardinality less than κ. In contrast to this we show that the additivity of Loeb measure cannot be greater than ω1. Define cof(H) as the smallest cardinality of a family of Loeb measure zero sets which cover every other Loeb measure zero set. We show that card(⌊log2(H)⌋) ≤ cof (H) ≤ card(2H), where card is the external cardinality. We answer a question of Paris and Mills concerning cuts in nonstandard models of number theory. We also present a pair of nonstandard universes M ≼ N and hyperfinite integer H ∈ M such that H is not enlarged by N, 2H contains new elements, but every new subset of H has Loeb measure zero. We show that it is consistent that there exists a Sierpiński set in the reals but no Loeb-Sierpiński set in any nonstandard universe. We also show that it is consistent with the failure of the continuum hypothesis that Loeb-Sierpiński sets can exist in some nonstandard universes and even in an ultrapower of a standard universe.


1972 ◽  
Vol 37 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Rolando Chuaqui

The purpose of this work is to formulate a general theory of forcing with classes and to solve some of the consistency and independence problems for the impredicative theory of classes, that is, the set theory that uses the full schema of class construction, including formulas with quantification over proper classes. This theory is in principle due to A. Morse [9]. The version I am using is based on axioms by A. Tarski and is essentially the same as that presented in [6, pp. 250–281] and [10, pp. 2–11]. For a detailed exposition the reader is referred there. This theory will be referred to as .The reflection principle (see [8]), valid for other forms of set theory, is not provable in . Some form of the reflection principle is essential for the proofs in the original version of forcing introduced by Cohen [2] and the version introduced by Mostowski [10]. The same seems to be true for the Boolean valued models methods due to Scott and Solovay [12]. The only suitable form of forcing for found in the literature is the version that appears in Shoenfield [14]. I believe Vopěnka's methods [15] would also be applicable. The definition of forcing given in the present paper is basically derived from Shoenfield's definition. Shoenfield, however, worked in Zermelo-Fraenkel set theory.I do not know of any proof of the consistency of the continuum hypothesis with assuming only that is consistent. However, if one assumes the existence of an inaccessible cardinal, it is easy to extend Gödel's consistency proof [4] of the axiom of constructibility to .


Sign in / Sign up

Export Citation Format

Share Document