105.36 New error analyses for some old mensuration formulae

2021 ◽  
Vol 105 (563) ◽  
pp. 339-343
Author(s):  
Nick Lord
Keyword(s):  
Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 182-188
Author(s):  
O. González-Gaxiola ◽  
Anjan Biswas ◽  
Abdullah Kamis Alzahrani

AbstractThis paper presents optical Gaussons by the aid of the Laplace–Adomian decomposition scheme. The numerical simulations are presented both in the presence and in the absence of the detuning term. The error analyses of the scheme are also displayed.


2021 ◽  
pp. 107754632110337
Author(s):  
Arup Maji ◽  
Fernando Moreu ◽  
James Woodall ◽  
Maimuna Hossain

Multi-Input-Multi-Output vibration testing typically requires the determination of inputs to achieve desired response at multiple locations. First, the responses due to each input are quantified in terms of complex transfer functions in the frequency domain. In this study, two Inputs and five Responses were used leading to a 5 × 2 transfer function matrix. Inputs corresponding to the desired Responses are then computed by inversion of the rectangular matrix using Pseudo-Inverse techniques that involve least-squared solutions. It is important to understand and quantify the various sources of errors in this process toward improved implementation of Multi-Input-Multi-Output testing. In this article, tests on a cantilever beam with two actuators (input controlled smart shakers) were used as Inputs while acceleration Responses were measured at five locations including the two input locations. Variation among tests was quantified including its impact on transfer functions across the relevant frequency domain. Accuracy of linear superposition of the influence of two actuators was quantified to investigate the influence of relative phase information. Finally, the accuracy of the Multi-Input-Multi-Output inversion process was investigated while varying the number of Responses from 2 (square transfer function matrix) to 5 (full-rectangular transfer function matrix). Results were examined in the context of the resonances and anti-resonances of the system as well as the ability of the actuators to provide actuation energy across the domain. Improved understanding of the sources of uncertainty from this study can be used for more complex Multi-Input-Multi-Output experiments.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 417
Author(s):  
Muhammad Awais ◽  
Saeed Ehsan Awan ◽  
Muhammad Asif Zahoor Raja ◽  
Muhammad Nawaz ◽  
Wasim Ullah Khan ◽  
...  

Novel nonlinear power-law flux models were utilized to model the heat transport phe-nomenon in nano-micropolar fluid over a flexible surface. The nonlinear conservation laws (mass, momentum, energy, mass transport and angular momentum) and KKL cor-relations for nanomaterial under novel flux model were solved numerically. Computed results were used to study the shear-thinning and shear-thickening nature of nano pol-ymer suspension by considering n-diffusion theory. Normalized velocity, temperature and micro-rotation profiles were investigated under the variation of physical parame-ters. Shear stresses at the wall for nanoparticles (CuO and Al2O3) were recorded and dis-played in the table. Error analyses for different physical parameters were prepared for various parameters to validate the obtained results.


1985 ◽  
Vol GE-23 (4) ◽  
pp. 527-530 ◽  
Author(s):  
Werner Kahn ◽  
Friedrich Von Bun

Author(s):  
Mohammad Rezaiee-Pajand ◽  
S. A. H. Esfehani ◽  
H. Ehsanmanesh

A new family of time integration methods is formulated. The recommended technique is useful and robust for the loads with large variations and the systems with nonlinear damping behavior. It is also applicable for the structures with lots of degrees of freedom, and can handle general nonlinear dynamic systems. By comparing the presented scheme with the fourth-order Runge–Kutta and the Newmark algorithms, it is concluded that the new strategy is more stable. The authors’ formulations have good results on amplitude decay and dispersion error analyses. Moreover, the family orders of accuracy are [Formula: see text] and [Formula: see text] for even and odd values of [Formula: see text], respectively. Findings demonstrate the superiority of the new family compared to explicit and implicit methods and dissipative and non-dissipative algorithms.


2006 ◽  
Vol 22 (03) ◽  
pp. 184-193
Author(s):  
Yujun Liu ◽  
Zhuoshang Ji ◽  
Yanping Deng ◽  
Jun Zhang ◽  
Ji Wang

Line heating is an effective and economical method for forming metal plates into three-dimensional shaped plates for ships, trains, and airplanes. When a curved plate subject to deformation is formed in line-heating process, the deformed shape is repeatedly inspected and reformed to reach the designed shape. Efficient automatic inspection and reforming processes are essential to enhance productivity in the whole manufacturing process. In this paper, efficient algorithms for inspection and reforming of double-curved plates are introduced. These algorithms have been developed to automatically inspect the transverse and longitudinal shape of plate surfaces and provide technical parameters to reform the unformed plates. The longitudinal shape of the plate surface is examined based on a shell plate development with plastic deformation during the plate formation, and the transverse shape is inspected through error analyses of transverse curvature radiuses. How to use the inspection results to reform unformed plates is discussed. In the end, experiments are performed with comparison to the current industrial plate manufacture, and results show a prospective application of our algorithms to the practical manufacturing of doublecurved plates. The methods presented in this study may play a role in realizing the automation of the entire curved-plate manufacturing process.


2006 ◽  
Vol 27 (4) ◽  
pp. 569-573 ◽  
Author(s):  
Klara Marton

This Commentary supports Gathercole's (2006) proposal on a double deficit in children with specific language impairment (SLI). The author suggests that these children have a limited phonological storage combined with a particular problem of processing novel speech stimuli. According to Gathercole, there are three areas of skill contributing to memory for nonwords: general cognitive abilities, phonological storage, and an unidentified skill specific to nonword repetition. The focus of this Commentary is to examine whether these children's nonword repetition performance is influenced by an unidentified skill or some other processes. An alternative hypothesis is that the nonword repetition errors observed in children with SLI are related to one of their main weaknesses, to their difficulties in simultaneous processing of information. Evidence for this argument comes from our recent studies: from error analyses data and from findings on nonword repetition with stimuli that included meaningful parts (monosyllabic real words).


Sign in / Sign up

Export Citation Format

Share Document