scholarly journals The effects of geographic range size and abundance on extinction during a time of “sluggish”’ evolution

Paleobiology ◽  
2020 ◽  
pp. 1-14
Author(s):  
Michelle M. Casey ◽  
Erin E. Saupe ◽  
Bruce S. Lieberman

Abstract Geographic range size and abundance are important determinants of extinction risk in fossil and extant taxa. However, the relationship between these variables and extinction risk has not been tested extensively during evolutionarily “quiescent” times of low extinction and speciation in the fossil record. Here we examine the influence of geographic range size and abundance on extinction risk during the late Paleozoic (Mississippian–Permian), a time of “sluggish” evolution when global rates of origination and extinction were roughly half those of other Paleozoic intervals. Analyses used spatiotemporal occurrences for 164 brachiopod species from the North American midcontinent. We found abundance to be a better predictor of extinction risk than measures of geographic range size. Moreover, species exhibited reductions in abundance before their extinction but did not display contractions in geographic range size. The weak relationship between geographic range size and extinction in this time and place may reflect the relative preponderance of larger-ranged taxa combined with the physiographic conditions of the region that allowed for easy habitat tracking that dampened both extinction and speciation. These conditions led to a prolonged period (19–25 Myr) during which standard macroevolutionary rules did not apply.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6910 ◽  
Author(s):  
Kayla M. Kolis ◽  
Bruce S. Lieberman

Geographic range is an important macroevolutionary parameter frequently considered in paleontological studies as species’ distributions and range sizes are determined by a variety of biotic and abiotic factors well known to affect the differential birth and death of species. Thus, considering how distributions and range sizes fluctuate over time can provide important insight into evolutionary dynamics. This study uses Geographic Information Systems (GIS) and analyses of evolutionary rates to examine how in some species within the Cephalopoda, an important pelagic clade, geographic range size and rates of speciation and extinction changed throughout the Pennsylvanian and early Permian in the North American Midcontinent Sea. This period is particularly interesting for biogeographic and evolutionary studies because it is characterized by repetitive interglacial-glacial cycles, a global transition from an icehouse to a greenhouse climate during the Late Paleozoic Ice Age, and decelerated macroevolutionary dynamics, i.e. low speciation and extinction rates. The analyses presented herein indicate that cephalopod species diversity was not completely static and actually fluctuated throughout the Pennsylvanian and early Permian, matching findings from other studies. However, contrary to some other studies, the mean geographic ranges of cephalopod species did not change significantly through time, despite numerous climate oscillations; further, geographic range size did not correlate with rates of speciation and extinction. These results suggest that pelagic organisms may have responded differently to late Paleozoic climate changes than benthic organisms, although additional consideration of this issue is needed. Finally, these results indicate that, at least in the case of cephalopods, macroevolution during the late Paleozoic was more dynamic than previously characterized, and patterns may have varied across different clades during this interval.


2015 ◽  
Vol 29 (3) ◽  
pp. 865-876 ◽  
Author(s):  
Claire A. Runge ◽  
Ayesha Tulloch ◽  
Edd Hammill ◽  
Hugh P. Possingham ◽  
Richard A. Fuller

2018 ◽  
Vol 46 (1) ◽  
pp. 97-109 ◽  
Author(s):  
Marcel Cardillo ◽  
Russell Dinnage ◽  
William McAlister

2020 ◽  
Vol 287 (1924) ◽  
pp. 20192645 ◽  
Author(s):  
Maya Rocha-Ortega ◽  
Pilar Rodríguez ◽  
Jason Bried ◽  
John Abbott ◽  
Alex Córdoba-Aguilar

Despite claims of an insect decline worldwide, our understanding of extinction risk in insects is incomplete. Using bionomic data of all odonate (603 dragonflies and damselflies) North American species, we assessed (i) regional extinction risk and whether this is related to local extirpation; (ii) whether these two patterns are similar altitudinally and latitudinally; and (iii) the areas of conservation concern. We used geographic range size as a predictor of regional extinction risk and body size, thermal limits and habitat association as predictors of local extirpation. We found that (i) greater regional extinction risk is related to narrow thermal limits, lotic habitat use and large body size (this in damselflies but not dragonflies); (ii) southern species are more climate tolerant but with more limited geographic range size than northern species; and (iii) two priority areas for odonate conservation are the cold temperate to sub-boreal northeastern USA and the transversal neo-volcanic system. Our approach can be used to estimate insect extinction risk as it compensates for the lack of abundance data.


2007 ◽  
Vol 10 (8) ◽  
pp. 745-758 ◽  
Author(s):  
Sarah E. Lester ◽  
Benjamin I. Ruttenberg ◽  
Steven D. Gaines ◽  
Brian P. Kinlan

Sign in / Sign up

Export Citation Format

Share Document