extinction selectivity
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 7)

H-INDEX

11
(FIVE YEARS 0)

Paleobiology ◽  
2021 ◽  
pp. 1-29
Author(s):  
Caleb M. Brown ◽  
Nicolás E. Campione ◽  
Gregory P. Wilson Mantilla ◽  
David C. Evans

Abstract The end-Cretaceous (K/Pg) mass extinction event is the most recent and well-understood of the “big five” and triggered establishment of modern terrestrial ecosystem structure. Despite the depth of research into this event, our knowledge of upper Maastrichtian terrestrial deposits globally relies primarily on assemblage-level data limited to a few well-sampled formations in North America, the Hell Creek and Lance Formations. These assemblages disproportionally affect our interpretations of this important interval. Multiple investigations have quantified diversity patterns within these assemblages, but the potential effect of formation-level size-dependent taphonomic biases and their implications on extinction dynamics remains unexplored. Here, the relationship between taphonomy and body size of the Hell Creek Formation and Lance Formation dinosaurs and mammals are quantitatively analyzed. Small-bodied dinosaur taxa (<70 kg) are consistently less complete, unlikely to be articulated, and delayed in their description relative to their large-bodied counterparts. Family-level abundance (particularly skeletons) is strongly tied to body mass, and the relative abundance of juveniles of large-bodied taxa similarly is underrepresented. Mammals show similar but nonsignificant trends. The results are remarkably similar to those from the Campanian-aged Dinosaur Park Formation, suggesting a widespread strong taphonomic bias against the preservation of small taxa, which will result in their seemingly depauperate diversity within the assemblage. This taphonomically skewed view of diversity and abundance of small-bodied taxa amid our best late Maastrichtian samples has significant implications for understanding speciation and extinction dynamics (e.g., size-dependent extinction selectivity) across the K/Pg boundary.


2021 ◽  
Vol 288 (1960) ◽  
Author(s):  
Pedro M. Monarrez ◽  
Noel A. Heim ◽  
Jonathan L. Payne

Whether mass extinctions and their associated recoveries represent an intensification of background extinction and origination dynamics versus a separate macroevolutionary regime remains a central debate in evolutionary biology. The previous focus has been on extinction, but origination dynamics may be equally or more important for long-term evolutionary outcomes. The evolution of animal body size is an ideal process to test for differences in macroevolutionary regimes, as body size is easily determined, comparable across distantly related taxa and scales with organismal traits. Here, we test for shifts in selectivity between background intervals and the ‘Big Five’ mass extinction events using capture–mark–recapture models. Our body-size data cover 10 203 fossil marine animal genera spanning 10 Linnaean classes with occurrences ranging from Early Ordovician to Late Pleistocene (485–1 Ma). Most classes exhibit differences in both origination and extinction selectivity between background intervals and mass extinctions, with the direction of selectivity varying among classes and overall exhibiting stronger selectivity during origination after mass extinction than extinction during the mass extinction. Thus, not only do mass extinction events shift the marine biosphere into a new macroevolutionary regime, the dynamics of recovery from mass extinction also appear to play an underappreciated role in shaping the biosphere in their aftermath.


2021 ◽  
Vol 288 (1946) ◽  
pp. 20202905
Author(s):  
Samuel T. Turvey ◽  
Clare Duncan ◽  
Nathan S. Upham ◽  
Xavier Harrison ◽  
Liliana M. Dávalos

Preventing extinctions requires understanding macroecological patterns of vulnerability or persistence. However, correlates of risk can be nonlinear, within-species risk varies geographically, and current-day threats cannot reveal drivers of past losses. We investigated factors that regulated survival or extinction in Caribbean mammals, which have experienced the globally highest level of human-caused postglacial mammalian extinctions, and included all extinct and extant Holocene island populations of non-volant species (219 survivals or extinctions across 118 islands). Extinction selectivity shows a statistically detectable and complex body mass effect, with survival probability decreasing for both mass extremes, indicating that intermediate-sized species have been more resilient. A strong interaction between mass and age of first human arrival provides quantitative evidence of larger mammals going extinct on the earliest islands colonized, revealing an extinction filter caused by past human activities. Survival probability increases on islands with lower mean elevation (mostly small cays acting as offshore refugia) and decreases with more frequent hurricanes, highlighting the risk of extreme weather events and rising sea levels to surviving species on low-lying cays. These findings demonstrate the interplay between intrinsic biology, regional ecology and specific local threats, providing insights for understanding drivers of biodiversity loss across island systems and fragmented habitats worldwide.


2020 ◽  
Author(s):  
William J. Foster ◽  
Georgy Ayzel ◽  
Terry T. Isson ◽  
Maria Mutti ◽  
Martin Aberhan

AbstractDecision tree algorithms are rarely utilized in paleontological research, and here we show that machine learning algorithms can be used to identify determinants of extinction as well as predict extinction risk. This application of decision tree algorithms is important because the ecological selectivity of mass extinctions can reveal critical information on organismic traits as key determinants of extinction and hence the causes of extinction. To understand which factors led to the mass extinction of life during an extreme global warming event, we quantified the ecological selectivity of marine extinctions in the well-studied South China region during the end-Permian mass extinction using the categorized gradient boosting algorithm. We find that extinction selectivity varies between different groups of organisms and that a synergy of multiple environmental stressors best explains the overall end-Permian extinction selectivity pattern. Extinction risk was greater for genera that were limited to deep-water habitats, had a stationary mode of life, possessed a siliceous skeleton or, less critically, had calcitic skeletons. These selective losses directly link the extinction to the environmental effects of rapid injections of carbon dioxide into the ocean-atmosphere system, specifically the combined effects of expanded oxygen minimum zones, rapid warming, and ocean acidification.


2020 ◽  
Author(s):  
Tasnuva Khan ◽  
◽  
Nussaibah Raja schoob ◽  
Ádám Kocsis ◽  
Joëlle Barido-Sottani ◽  
...  

Paleobiology ◽  
2019 ◽  
pp. 1-20
Author(s):  
Selina R. Cole

Abstract Identifying correlates of extinction risk is important for understanding the underlying mechanisms driving differential rates of extinction and variability in the temporal durations of taxa. Increasingly, it is recognized that the effects of multiple, potentially interacting variables and phylogenetic relationships should be incorporated when studying extinction selectivity to account for covariation of traits and shared evolutionary history. Here, I explore a variety of biological and ecological controls on genus longevity in the global fossil record of diplobathrid crinoids by analyzing the combined effects of species richness, habitat preference, body size, filtration fan density, and food size selectivity. I employ a suite of taxic and phylogenetic approaches to (1) quantitatively compare and rank the relative effects of multiple factors on taxonomic longevity and (2) determine how phylogenetic comparative approaches alter interpretations of extinction selectivity. I find controls on diplobathrid genus duration are hierarchically structured, where species richness is the primary predictor of duration, habitat is the secondary predictor, and combinations of ecological and biological traits are tertiary controls. Ecology plays an important but complex role in the generation of crinoid macroevolutionary patterns. Notably, tolerance of environmental heterogeneity promotes increased genus duration across diplobathrid crinoids, and the effects of traits related to feeding ecology vary depending on habitat lithology. Finally, I find accounting for phylogeny does not consistently decrease the significance of correlations between traits and genus duration, as is commonly expected. Instead, the strength of relationships between traits and duration may increase, decrease, or remain statistically similar, and both the magnitude and direction of these shifts are generally unpredictable. However, traits with strong correlations and/or moderately large effect sizes (Cohen's f2 > 0.15) under taxic approaches tend to remain qualitatively unchanged under phylogenetic approaches.


2018 ◽  
Vol 285 (1889) ◽  
pp. 20180404 ◽  
Author(s):  
Alexander M. Dunhill ◽  
William J. Foster ◽  
Sandro Azaele ◽  
James Sciberras ◽  
Richard J. Twitchett

The Late Triassic and Early Toarcian extinction events are both associated with greenhouse warming events triggered by massive volcanism. These Mesozoic hyperthermals were responsible for the mass extinction of marine organisms and resulted in significant ecological upheaval. It has, however, been suggested that these events merely involved intensification of background extinction rates rather than significant shifts in the macroevolutionary regime and extinction selectivity. Here, we apply a multivariate modelling approach to a vast global database of marine organisms to test whether extinction selectivity varied through the Late Triassic and Early Jurassic. We show that these hyperthermals do represent shifts in the macroevolutionary regime and record different extinction selectivity compared to background intervals of the Late Triassic and Early Jurassic. The Late Triassic mass extinction represents a more profound change in selectivity than the Early Toarcian extinction but both events show a common pattern of selecting against pelagic predators and benthic photosymbiotic and suspension-feeding organisms, suggesting that these groups of organisms may be particularly vulnerable during episodes of global warming. In particular, the Late Triassic extinction represents a macroevolutionary regime change that is characterized by (i) the change in extinction selectivity between Triassic background intervals and the extinction event itself; and (ii) the differences in extinction selectivity between the Late Triassic and Early Jurassic as a whole.


2018 ◽  
Author(s):  
Alexander Dunhill ◽  
William J. Foster ◽  
Sandro Azaele ◽  
James Sciberras ◽  
Richard J. Twitchett

The Late Triassic and early Toarcian extinction events are both associated with greenhouse warming events triggered by massive volcanism. These Mesozoic hyperthermals were responsible for the mass extinction of marine organisms and resulted in significant ecological upheaval. It has, however, been suggested that these events merely involved intensification of background extinction rates rather than significant shifts in the macroevolutionary regime and extinction selectivity. Here, we apply a multivariate modelling approach to a vast global database of marine organisms to test whether extinction selectivity varied through the Late Triassic and Early Jurassic. We show that these hyperthermals do represent shifts in the macroevolutionary regime and record different extinction selectivity compared to background intervals of the Late Triassic and Early Jurassic. The Late Triassic mass extinction represents a more profound change in selectivity than the early Toarcian extinction but both events show a common pattern of selecting against pelagic predators and benthic photosymbiotic and suspension-feeding organisms, suggesting that these groups of organisms may be particularly vulnerable during episodes of global warming. In particular, the Late Triassic extinction represents a macroevolutionary regime change that is characterised by (i) the change in extinction selectivity between Triassic background intervals and the extinction event itself; and (ii) the differences in extinction selectivity between the Late Triassic and Early Jurassic as a whole.


Palaeontology ◽  
2018 ◽  
Vol 62 (2) ◽  
pp. 211-224 ◽  
Author(s):  
Bethany J. Allen ◽  
Thomas L. Stubbs ◽  
Michael J. Benton ◽  
Mark N. Puttick

Sign in / Sign up

Export Citation Format

Share Document