scholarly journals Scientific Goals of the Kunlun Infrared Sky Survey (KISS)

Author(s):  
Michael G. Burton ◽  
Jessica Zheng ◽  
Jeremy Mould ◽  
Jeff Cooke ◽  
Michael Ireland ◽  
...  

AbstractThe high Antarctic plateau provides exceptional conditions for infrared observations on account of the cold, dry and stable atmosphere above the ice surface. This paper describes the scientific goals behind the first program to examine the time-varying universe in the infrared from Antarctica — the Kunlun Infrared Sky Survey (KISS). This will employ a 50cm telescope to monitor the southern skies in the 2.4μmKdark window from China's Kunlun station at Dome A, on the summit of the Antarctic plateau, through the uninterrupted 4-month period of winter darkness. An earlier paper discussed optimisation of the Kdark filter for sensitivity (Li et al. 2016). This paper examines the scientific program for KISS. We calculate the sensitivity of the camera for the extrema of observing conditions that will be encountered. We present the parameters for sample surveys that could then be carried out for a range of cadences and sensitivities. We then discuss several science programs that could be conducted with these capabilities, involving star formation, brown dwarfs and hot Jupiters, exoplanets around M dwarfs, the terminal phases of stellar evolution, fast transients, embedded supernova searches, reverberation mapping of AGN, gamma ray bursts and the detection of the cosmic infrared background.

2021 ◽  
Author(s):  
Rico Landman ◽  
Alejandro Sánchez-López ◽  
Paul Mollière ◽  
Aurora Kesseli ◽  
Amy Louca ◽  
...  

<p>Ultra-hot Jupiters have dayside temperatures similar to those of M-dwarfs. While molecular absorption from the hydroxyl radical (OH) is easily observed in near-infrared spectra of M-dwarfs, it is often not considered when studying the atmospheres of (ultra-)hot Jupiters. We use high-resolution spectroscopic near-infrared observations of a transit of WASP-76b obtained using CARMENES to assess the presence of OH. After validating the OH line list, we generate model transit spectra of WASP-76b with petitRADTRANS. The data are corrected for telluric contamination and cross-correlated with the model spectra. After combining all cross-correlation functions from the transit, a detection map is constructed. OH is detected in the atmosphere of WASP-76b with a signal-to-noise ratio of 6.1. From a Markov Chain Monte Carlo retrieval we obtain Kp=234 km/s and a blueshift of 13.9 km/s. Considering the fast spin-rotation of the planet, the OH signal is best explained with the signal mainly originating from the evening terminator and the presence of a strong day- to nightside wind. The signal appears to be broad, with a full width at half maximum of 16.2 km/s. The retrieval results in a weak constraint on the temperature of 2420-3150 K at the pressure of the OH signal. Our results demonstrate that OH is readily observable in the transit spectra of ultra-hot Jupiters. Studying this molecule can give new insights in the molecular dissociation processes in the atmospheres of such planets.</p>


2019 ◽  
Vol 490 (3) ◽  
pp. 4107-4120
Author(s):  
J Bentley ◽  
C G Tinney ◽  
S Sharma ◽  
D Wright

ABSTRACT We present criteria for the selection of M-dwarfs down to G < 14.5 using all-sky survey data, with a view to identifying potential M-dwarfs, to be confirmed spectroscopically by the FunnelWeb survey. Two sets of criteria were developed. The first, based on absolute magnitude in the Gaia G passband, with MG > 7.7, selects 76,392 stars, with 81.0 per cent expected to be M-dwarfs at a completeness of >97 per cent. The second is based on colour and uses Gaia, WISE, and 2MASS all-sky photometry. This criteria identifies 94,479 candidate M-dwarfs, of which between 29.4 per cent and 47.3 per cent are expected to be true M-dwarfs, and which contains 99.6 per cent of expected M-dwarfs. Both criteria were developed using synthetic galaxy model predictions, and a previously spectroscopically classified set of M- and K-dwarfs, to evaluate both M-dwarf completeness and false-positive detections (i.e. the non-M-dwarf contamination rate). Both criteria used in combination demonstrate how each excludes different sources of contamination. We therefore developed a final set of criteria that combines absolute magnitude and colour selection to identify 74,091 stars. All these sets of criteria select numbers of objects feasible for confirmation via massively multiplexed spectroscopic surveys like FunnelWeb.


2016 ◽  
Vol 224 (2) ◽  
pp. 14 ◽  
Author(s):  
K. D. Denney ◽  
Keith Horne ◽  
Yue Shen ◽  
W. N. Brandt ◽  
Luis C. Ho ◽  
...  

2020 ◽  
Vol 903 (2) ◽  
pp. 112
Author(s):  
Elena Dalla Bontà ◽  
Bradley M. Peterson ◽  
Misty C. Bentz ◽  
W. N. Brandt ◽  
S. Ciroi ◽  
...  

Author(s):  
L. Mészáros ◽  
A. Pál ◽  
G. Csépány ◽  
K. Vida ◽  
L. Kriskovics ◽  
...  

To study astrophysical transit phenomena we follow an alternative strategy for getting high-cadence observations of the field. This can be achieved with our new Fly’s Eye Camera System that monitors the entire sky above 30◦ horizontal altitude. With this instrument one can observe all phenomena brighter than ∼ 15m in Sloan r-band (u’, g’,i’ and z’ filters are also available). If we stack together a few hour of images we canobserve ∼ 17 m faint sources. This small-sized instrument is designed for time-domain astronomy with its 150 sec cadence. Due to the hexapod-based motion control, the instrument can be installed anywhere without any modifications, it can accomplish sky tracking automatically. These parallel robots have 6 degrees of freedom (DoF), but since any kind of rotation can be done by using only 3 DoF, the tracking with hexapods is independent from the geographical coordinates. Even polar alignment is not required, because Fly’s Eye can calibrate itself based on its own observed data. The system is optimal for time-domain astronomy: detecting novae, supernovae, optical afterglows of gamma-ray bursts and other bright, fast transients, and, from the observation database such data can be obtained - even from before the discovery of the transient event. In the future when the direction of the gravitational waves will be defined precisely we will be able to detect their first multiwaveband counterparts. In addition the Fly’s Eye will support the “Transient Astrophysical Objects” project which will use two new 80 cm robotic telescopes for follow-up observations of transients.


2019 ◽  
Vol 207 ◽  
pp. 03001 ◽  
Author(s):  
Ludwig Rauch

The IceCube neutrino observatory has discovered a flux of extragalactic neutrinos. However, the origin of these neutrinos is still unknown. Among the possible candidates are Gamma-Ray Bursts (GRBs), Core-Collapse Supernovae (SNe), Active Galactic Nuclei (AGN) and Tidal Disruption Events (TDEs) - all are accompanied by a characteristic optical counterpart. The goal of this study is thus to identify the neutrino sources by detecting their optical counterparts with the Zwicky Transient Facility (ZTF). ZTF features a high cadence northern-sky survey enabling realtime correlation of optical transients with high-energy neutrino candidates. In this talk I will highlight the multimessenger potential of ZTF for an online neutrino correlation study with Ice- Cube.


Sign in / Sign up

Export Citation Format

Share Document