Existence of solution for elliptic equations with supercritical Trudinger–Moser growth

Author(s):  
Luiz F. O. Faria ◽  
Marcelo Montenegro

This paper is concerned with the existence of solutions for a class of elliptic equations on the unit ball with zero Dirichlet boundary condition. The nonlinearity is supercritical in the sense of Trudinger–Moser. Using a suitable approximating scheme we obtain the existence of at least one positive solution.

Author(s):  
Marcelo Montenegro ◽  
Antonio Suárez

We show the existence and non-existence of positive solutions to a system of singular elliptic equations with the Dirichlet boundary condition.


2014 ◽  
Vol 66 (5) ◽  
pp. 1110-1142
Author(s):  
Dong Li ◽  
Guixiang Xu ◽  
Xiaoyi Zhang

AbstractWe consider the obstacle problem for the Schrödinger evolution in the exterior of the unit ball with Dirichlet boundary condition. Under radial symmetry we compute explicitly the fundamental solution for the linear Dirichlet Schrödinger propagator and give a robust algorithm to prove sharp L1 → L∞ dispersive estimates. We showcase the analysis in dimensions n = 5, 7. As an application, we obtain global well–posedness and scattering for defocusing energy-critical NLS on with Dirichlet boundary condition and radial data in these dimensions.


2018 ◽  
Vol 18 (4) ◽  
pp. 775-783 ◽  
Author(s):  
David Arcoya ◽  
Alexis Molino ◽  
Lourdes Moreno-Mérida

AbstractIn this paper, we study the regularizing effect of lower order terms in elliptic problems involving a Hardy potential. Concretely, our model problem is the differential equation-\Delta u+h(x)|u|^{p-1}u=\lambda\frac{u}{|x|^{2}}+f(x)\quad\text{in }\Omega,with Dirichlet boundary condition on {\partial\Omega}, where {p>1} and {f\in L^{m}_{h}(\Omega)} (i.e. {|f|^{m}h\in L^{1}(\Omega)}) with {m\geq\frac{p+1}{p}}. We prove that there is a solution of the above problem even for λ greater than the Hardy constant; i.e., {\lambda\geq\mathcal{H}=\frac{(N-2)^{2}}{4}} and nonnegative functions {h\in L^{1}(\Omega)} which could vanish in a subset of Ω. Moreover, we show that all the solutions are in {L^{pm}_{h}(\Omega)}. These results improve and generalize the case {h(x)\equiv h_{0}} treated in [2, 10].


2018 ◽  
Vol 18 (2) ◽  
pp. 393-407 ◽  
Author(s):  
Wael Abdelhedi ◽  
Hichem Chtioui ◽  
Hichem Hajaiej

AbstractWe study the following fractional Yamabe-type equation:\left\{\begin{aligned} \displaystyle A_{s}u&\displaystyle=u^{\frac{n+2s}{n-2s}% },\\ \displaystyle u&\displaystyle>0&&\displaystyle\text{in }\Omega,\\ \displaystyle u&\displaystyle=0&&\displaystyle\text{on }\partial\Omega,\end{% aligned}\right.Here Ω is a regular bounded domain of{\mathbb{R}^{n}},{n\geq 2}, and{A_{s}},{s\in(0,1)}, represents the fractional Laplacian operator{(-\Delta)^{s}}in Ω with zero Dirichlet boundary condition. We investigate the effect of the topology of Ω on the existence of solutions. Our result can be seen as the fractional counterpart of the Bahri–Coron theorem [3].


2008 ◽  
Vol 2 (2) ◽  
pp. 158-174 ◽  
Author(s):  
Qianqiao Guo ◽  
Pengcheng Niu ◽  
Jingbo Dou

We consider the semilinear elliptic problem with critical Hardy-Sobolev exponents and Dirichlet boundary condition. By using variational methods we obtain the existence and multiplicity of nontrivial solutions and improve the former results.


2003 ◽  
Vol 133 (5) ◽  
pp. 1137-1153 ◽  
Author(s):  
M. A. Jendoubi ◽  
P. Poláčik

We consider two types of equations on a cylindrical domain Ω × (0, ∞), where Ω is a bounded domain in RN, N ≥ 2. The first type is a semilinear damped wave equation, in which the unbounded direction of Ω × (0, ∞) is reserved for time t. The second type is an elliptic equation with a singled-out unbounded variable t. In both cases, we consider solutions that are defined and bounded on Ω × (0, ∞) and satisfy a Dirichlet boundary condition on ∂Ω × (0, ∞). We show that, for some nonlinearities, the equations have bounded solutions that do not stabilize to any single function φ: Ω → R, as t → ∞; rather, they approach a continuum of such functions. This happens despite the presence of damping in the equation that forces the t derivative of bounded solutions to converge to 0 as t → ∞. Our results contrast with known stabilization properties of solutions of such equations in the case N = 1.


Author(s):  
Xiyou Cheng ◽  
Lei Wei ◽  
Yimin Zhang

We consider the boundary Hardy–Hénon equation \[ -\Delta u=(1-|x|)^{\alpha} u^{p},\ \ x\in B_1(0), \] where $B_1(0)\subset \mathbb {R}^{N}$   $(N\geq 3)$ is a ball of radial $1$ centred at $0$ , $p>0$ and $\alpha \in \mathbb {R}$ . We are concerned with the estimate, existence and nonexistence of positive solutions of the equation, in particular, the equation with Dirichlet boundary condition. For the case $0< p<({N+2})/({N-2})$ , we establish the estimate of positive solutions. When $\alpha \leq -2$ and $p>1$ , we give some conclusions with respect to nonexistence. When $\alpha >-2$ and $1< p<({N+2})/({N-2})$ , we obtain the existence of positive solution for the corresponding Dirichlet problem. When $0< p\leq 1$ and $\alpha \leq -2$ , we show the nonexistence of positive solutions. When $0< p<1$ , $\alpha >-2$ , we give some results with respect to existence and uniqueness of positive solutions.


2015 ◽  
Vol 34 (2) ◽  
pp. 147-167 ◽  
Author(s):  
Abdellah Ahmed Zerouali ◽  
Belhadj Karim

We use the Hardy-Sobolev inequality to study existence and non-existence results for a positive solution of the quasilinear elliptic problem -\Delta{p}u − \mu \Delta{q}u = \limda[mp(x)|u|p−2u + \mu mq(x)|u|q−2u] in \Omega driven by nonhomogeneous operator (p, q)-Laplacian with singular weights under the Dirichlet boundary condition. We also prove that in the case where μ > 0 and with 1 < q < p < \infinity the results are completely different from those for the usual eigenvalue for the problem p-Laplacian with singular weight under the Dirichlet boundary condition, which is retrieved when μ = 0. Precisely, we show that when μ > 0 there exists an interval of eigenvalues for our eigenvalue problem.


Sign in / Sign up

Export Citation Format

Share Document