scholarly journals Temporal Variability of Dissolved Organic Radiocarbon in the Deep North Pacific Ocean

Radiocarbon ◽  
2018 ◽  
Vol 60 (4) ◽  
pp. 1115-1123 ◽  
Author(s):  
Ellen R M Druffel ◽  
Sheila Griffin ◽  
Ning Wang ◽  
Brett D Walker

ABSTRACTWe report marine dissolved organic carbon (DOC) ∆14C from seawater collected from the North central Pacific Ocean (NCP) in 2015. These measurements show DOC ∆14C values averaged –235±5‰ (n=3) in the mixed layer (24–81 m) and –544±5‰ (n=5) in the deep water (1500–5139 m). A comparison of these data with two previously published DOC ∆14C profiles from the NCP in 1985 and 1987 reveals that deep DOC ∆14C values have decreased. We discuss several possible mechanisms that could cause such a shift in DOC ∆14C values, including spatial inhomogeneity and temporal variability due to changes in the dissolution and ∆14C value of surface derived particles in the deep sea. We find that forthcoming profiles of DOC ∆14C results from the NCP will determine the primary mechanisms controlling deep DOC ∆14C distributions, and changes over the past three decades.

2015 ◽  
Vol 28 (4) ◽  
pp. 1561-1577 ◽  
Author(s):  
Bo Qiu ◽  
Shuiming Chen ◽  
Lixin Wu ◽  
Shinichiro Kida

Abstract Regional sea level trend and variability in the Pacific Ocean have often been considered to be induced by low-frequency surface wind changes. This study demonstrates that significant sea level trend and variability can also be generated by eddy momentum flux forcing due to time-varying instability of the background oceanic circulation. Compared to the broad gyre-scale wind-forced variability, the eddy-forced sea level changes tend to have subgyre scales and, in the North Pacific Ocean, they are largely confined to the Kuroshio Extension region (30°–40°N, 140°–175°E) and the Subtropical Countercurrent (STCC) region (18°–28°N, 130°–175°E). Using a two-layer primitive equation model driven by the ECMWF wind stress data and the eddy momentum fluxes specified by the AVISO sea surface height anomaly data, the relative importance of the wind- and eddy-forced regional sea level trends in the past two decades is quantified. It is found that the increasing (decreasing) trend south (north) of the Kuroshio Extension is due to strengthening of the regional eddy forcing over the past two decades. On the other hand, the decreasing (increasing) sea level trend south (north) of the STCC is caused by the decadal weakening of the regional eddy momentum flux forcing. These decadal eddy momentum flux changes are caused by the background Kuroshio Extension and STCC changes in connection with the Pacific decadal oscillation (PDO) wind pattern shifting from a positive to a negative phase over the past two decades.


2010 ◽  
Vol 3 (11) ◽  
pp. 762-765 ◽  
Author(s):  
E. Di Lorenzo ◽  
K. M. Cobb ◽  
J. C. Furtado ◽  
N. Schneider ◽  
B. T. Anderson ◽  
...  

Nature ◽  
1995 ◽  
Vol 377 (6547) ◽  
pp. 323-326 ◽  
Author(s):  
A. T. Kotilainen ◽  
N. J. Shackleton

Sign in / Sign up

Export Citation Format

Share Document