Patterns and drivers of microeukaryotic distribution along the North Equatorial Current from the Central Pacific Ocean to the South China Sea

2021 ◽  
Vol 165 ◽  
pp. 112091
Author(s):  
Feng Zhao ◽  
Yu Wang ◽  
Shan Zheng ◽  
Rongjie Zhao ◽  
Mao Lin ◽  
...  
Radiocarbon ◽  
2016 ◽  
Vol 58 (1) ◽  
pp. 37-53 ◽  
Author(s):  
Annette Bolton ◽  
Nathalie F Goodkin ◽  
Ellen R M Druffel ◽  
Sheila Griffin ◽  
Sujata A Murty

AbstractAnnual radiocarbon from a massive Porites lutea coral collected from Hon Tre Island, Vietnam, South China Sea (SCS) was analyzed over a ~100-yr-long period from AD 1900 to 1986. The pre-bomb results from 1900–1953 show a steady Δ14C value of –54.4±1.8‰ (n=60). These values are similar to coral records located in the central and southern SCS and from Indonesian waters, but are lower than those from Japan. Following the input of anthropogenic bomb 14C, our results show a sharp increase in Δ14C from 1960, reaching a peak value of 155.3‰ in 1973. The Hon Tre Island post-bomb Δ14C values are lower than those of other corals located in the SCS and Japan, but higher compared to those in the Indonesian Seas. This study infers a seasonal input of upwelled water depleted in 14C from the deeper SCS basin that originates from the tropical Pacific via the Luzon Strait. The bifurcation of the North Equatorial Current feeds the surface and intermediate currents in the SCS and Makassar Strait region. However, unlike the Makassar site, this study’s coral Δ14C does not receive lower 14C water from the South Pacific Equatorial Current. The Vietnam record therefore represents a unique oceanographic position, reflecting the seasonal influence of older, deeper SCS waters that upwell periodically in this area and have modified the surface waters locally in this region over the last 100 yr.


Check List ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. 1195-1198
Author(s):  
Yusri Yusuf ◽  
Ying Giat Seah ◽  
Md Repin Izarenah ◽  
Jen Nie Lee

Oplegnathus punctatus (Temminck & Schlegel, 1844) is reported for the first time in the southern South China Sea, off Pulau Tenggol, Malaysia. This species is native to the north-western and central Pacific Ocean and mainly occurs in subtropical and warm temperate waters. This record is a significant southward extension of its range and also represents the first documentation of the family Oplegnathidae in Malaysia. 


2019 ◽  
Vol 8 (44) ◽  
Author(s):  
Ying Zheng ◽  
Cong Sun

Here, we report the whole-genome sequences of two bacterial strains, Muricauda sp. 72 and NH166, isolated from the South China Sea and West Pacific Ocean, respectively. These two strains may represent a novel species of the genus Muricauda, and the features of their genome sequences will enrich our understandings of strains in the genus Muricauda.


2005 ◽  
Vol 18 (13) ◽  
pp. 2388-2402 ◽  
Author(s):  
Jiangyu Mao ◽  
Johnny C. L. Chan

Abstract The objective of this study is to explore, based on the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data, the intraseasonal variability of the South China Sea (SCS) summer monsoon (SM) in terms of its structure and propagation, as well as interannual variations. A possible mechanism that is responsible for the origin of the 10–20-day oscillation of the SCS SM is also proposed. The 30–60-day (hereafter the 3/6 mode) and 10–20-day (hereafter the 1/2 mode) oscillations are found to be the two intraseasonal modes that control the behavior of the SCSSM activities for most of the years. Both the 3/6 and 1/2 modes are distinct, but may not always exist simultaneously in a particular year, and their contributions to the overall variations differ among different years. Thus, the interannual variability in the intraseasonal oscillation activity of the SCS SM may be categorized as follows: the 3/6 category, in which the 3/6 mode is more significant (in terms of the percentage of variance explained) than the 1/2 mode; the 1/2 category, in which the 1/2 mode is dominant; and the dual category, in which both the 3/6 and 1/2 modes are pronounced. Composite analyses of the 3/6 category cases indicate that the 30–60-day oscillation of the SCS SM exhibits a trough–ridge seesaw in which the monsoon trough and subtropical ridge exist alternatively over the SCS, with anomalous cyclones (anticyclones), along with enhanced (suppressed) convection, migrating northward from the equator to the midlatitudes. The northward-migrating 3/6-mode monsoon trough–ridge in the lower troposphere is coupled with the eastward-propagating 3/6-mode divergence–convergence in the upper troposphere. It is also found that, for the years in the dual category, the SCS SM activities are basically controlled by the 3/6 mode, but modified by the 1/2 mode. Composite results of the 1/2-mode category cases show that the 10–20-day oscillation is manifest as an anticyclone–cyclone system over the western tropical Pacific, propagating northwestward into the SCS. A close coupling also exists between the upper-level convergence (divergence) and the low-level anticyclone (cyclone). It is found that the 1/2 mode of the SCS SM mainly originates from the equatorial central Pacific, although a disturbance from the northeast of the SCS also contributes to this mode. The flow patterns from an inactive to an active period resemble those associated with a mixed Rossby–gravity wave observed in previous studies.


2018 ◽  
Vol 31 (10) ◽  
pp. 3999-4016 ◽  
Author(s):  
Tzu-Ling Chiang ◽  
Yi-Chia Hsin ◽  
Chau-Ron Wu

Abstract By analyzing the upper-ocean properties of observation-based hydrographic data and validated oceanic reanalysis products, this study presents multidecadal changes of oceanic surface and subsurface thermal conditions in the tropical northwest Pacific Ocean (TNWP) and South China Sea (SCS) during 1960–2015. The analysis reveals that a transition of a 30-yr trend took place in 1980s during the analyzed period for both the surface and subsurface environment. Generally, the warming trend of sea surface temperature (SST) in the TNWP has a similar multidecadal change to that in the SCS. However, a huge accumulating rate of upper-ocean heat content above the 26°C isotherm (UOHC26) showed up in the TNWP (about 3 times compared to that in the SCS) in the last 30 years. In the TNWP, the southward shift of the North Equatorial Current on the multidecadal time scale induces the vertical displacement of isotherms, leading to a strong subsurface warming around the top of the thermocline. Secondarily, the Pacific decadal oscillation (PDO)-related SST regulates the thermal structure in the mixed layer. The multidecadal UOHC26 in the SCS is mainly attributed to the PDO-related SST and further modulated by the isothermal variability caused by the change of basin-scale SCS circulation.


Sign in / Sign up

Export Citation Format

Share Document