scholarly journals DENDROCHRONOLOGY AND RADIOCARBON DATING

Radiocarbon ◽  
2021 ◽  
pp. 1-20
Author(s):  
Charlotte L Pearson ◽  
Steven W Leavitt ◽  
Bernd Kromer ◽  
Sami K Solanki ◽  
Ilya Usoskin

ABSTRACT Both dendrochronology and radiocarbon (14C) dating have their roots back in the early to mid-1900s. Although they were independently developed, they began to intertwine in the 1950s when the founder of dendrochronology, A. E. Douglass, provided dated wood samples for Willard Libby to test his emerging 14C methods. Since this early connection, absolutely dated tree-rings have been key to calibration of the Holocene portion of the 14C timescale. In turn, 14C dating of non-calendar-dated tree-rings has served to place those samples more precisely in time, advance development of long tree-ring chronologies, and bring higher resolution to earlier portions of the 14C calibration curve. Together these methods continue to shape and improve chronological frameworks across the globe, answering questions in archaeology, history, paleoclimatology, geochronology, and ocean, atmosphere, and solar sciences.

Radiocarbon ◽  
1995 ◽  
Vol 37 (1) ◽  
pp. 71-74 ◽  
Author(s):  
Irena Hajdas ◽  
Georges Bonani ◽  
Tomasz Goślar

Terrestrial macrofossils selected from laminated sediment of Lake Gościąż were dated by AMS. Thus, part of the floating varve chronology (FVC) (Goslar et al. 1993) between radiocarbon ages of 4225 ± 45 and 7740 ± 85 bp can be compared and placed on the 14C calibration curve. As a result of our dating, the top of the FVC is now dated between 3120 and 3300 cal bp, i.e., 3210 ± 90 cal bp.


Radiocarbon ◽  
2014 ◽  
Vol 56 (04) ◽  
pp. S85-S92
Author(s):  
Pearce Paul Creasman

A fundamental aspect of ancient Egyptian history remains unresolved: chronology. Egyptologists (and researchers in related fields that synchronize their studies with Egypt) currently rely on a variety of insufficiently precise methodologies (king lists, radiocarbon dating, etc.) from which to derive seemingly “absolute” dates. The need for genuine precision has been recognized for a century, as has the potential solution: dendrochronology. This manuscript presents a case for further progress toward the construction of a tree-ring chronology for ancient Egypt.


Radiocarbon ◽  
1995 ◽  
Vol 37 (2) ◽  
pp. 155-163 ◽  
Author(s):  
R. J. Sparks ◽  
W. H. Melhuish ◽  
J.W. A. McKee ◽  
John Ogden ◽  
J. G. Palmer ◽  
...  

Tree rings from a section of Prumnopitys taxifolia (matai) covering the period ad 1335–1745 have been radiocarbon dated and used to generate a 14C calibration curve for southern hemisphere wood. Comparison of this curve with calibration data for northern hemisphere wood does not show a systematic difference between 14C ages measured in the northern and southern hemispheres. A floating chronology covering 270 yr and terminating at the last Taupo (New Zealand) eruption, derived from a sequence of 10-yr samples of tree rings from Phyllocladus trichomanoides (celery pine, or tanekaha), is also consistent with the absence of a systematic north-south difference, and together with the matai data, fixes the date of the Taupo eruption at ad 232 ± 15.


Radiocarbon ◽  
2018 ◽  
Vol 60 (2) ◽  
pp. 535-548 ◽  
Author(s):  
A J T Jull ◽  
C L Pearson ◽  
R E Taylor ◽  
J R Southon ◽  
G M Santos ◽  
...  

AbstractWe performed a new series of measurements on samples that were part of early measurements on radiocarbon (14C) dating made in 1948–1949. Our results show generally good agreement to the data published in 1949–1951, despite vast changes in technology, with only two exceptions where there was a discrepancy in the original studies. Our new measurements give calibrated ages that overlap with the known ages. We dated several samples at four different laboratories, and so we were also able to make a small intercomparison at the same time. In addition, new measurements on samples from other Egyptian materials used by Libby and co-workers were made at UC Irvine. Samples of tree rings used in the original studies (from Broken Flute Cave and Centennial Stump) were obtained from the University of Arizona Laboratory of Tree-Ring Research archive and remeasured. New data were compared to the original studies and other records.


Radiocarbon ◽  
2012 ◽  
Vol 54 (3-4) ◽  
pp. 625-633 ◽  
Author(s):  
J van der Plicht ◽  
M Imamura ◽  
M Sakamoto

We have radiocarbon dated series of tree rings from 2 fossil trees (named ND-113 and the Fuji tree) buried in fossil volcanic avalanche deposits in Japan. They are dendrochronologically floating, dating beyond the tree-ring part of the 14C calibration curve. The trees show about 350 and 400 annual rings, respectively, which are dated in intervals of 2 to 10 yr. Both sequences are wiggle-matched to the calibration curve IntCal09. This resulted in an age range of 16,534–16,204 cal BP for ND-113, and 23,678–23,290 cal BP for the Fuji tree.


Radiocarbon ◽  
2018 ◽  
Vol 60 (5) ◽  
pp. 1457-1464 ◽  
Author(s):  
Sabrina G K Kudsk ◽  
Jesper Olsen ◽  
Lasse N Nielsen ◽  
Alexandra Fogtmann-Schulz ◽  
Mads F Knudsen ◽  
...  

ABSTRACTSubstantial amounts of annual radiocarbon (14C) data have recently been produced with the purpose of increasing the time resolution of 14C records used for constructing the calibration curve and for studying the occurrence of abrupt cosmic-ray events. In this study, we investigate if it is possible to resolve sub-annual scale changes in the atmospheric 14C content by measuring radiocarbon in early-wood and late-wood fractions from Danish oak. The tree-ring samples span the period 1954–1970 CE, hereby covering the peak of the bomb pulse. A least squares test comparing the atmospheric 14C content and the new sub-annual 14C record from Danish tree rings reveals that by measuring early-wood and late-wood fractions, it may be possible to resolve sub-annual variations in past atmospheric 14C levels.


2017 ◽  
Vol 1 (1) ◽  
pp. 3-16
Author(s):  
Fiona Brock ◽  
Gordon T. Cook

Radiocarbon dating is a valuable tool for the forensic examination of human remains in answering questions as to whether the remains are of forensic or medico-legal interest or archaeological in date. The technique is also potentially capable of providing the year of birth and/or death of an individual. Atmospheric radiocarbon levels are currently enhanced relative to the natural level due to the release of large quantities of radiocarbon (14C) during the atmospheric nuclear weapons testing of the 1950s and 1960s. This spike, or “bomb-pulse,” can, in some instances, provide precision dates to within 1–2 calendar years. However, atmospheric 14C activity has been declining since the end of atmospheric weapons testing in 1963 and is likely to drop below the natural level by the mid-twenty-first century, with implications for the application of radiocarbon dating to forensic specimens.


Radiocarbon ◽  
1993 ◽  
Vol 35 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Minze Stuiver

Most data in this Calibration Issue are based on radiocarbon age determinations of tree-ring samples with dendrochronologically determined calibrated (cal) ages. For high-precision measurements, substantial sample amounts are needed, and the processed wood usually spans 10 or 20 tree rings. Thus, the calibration curve data points usually have decadal, or bidecadal, spacing. These curves, to be used for the calibration of samples formed over 1 or 2 decades, may not be fully applicable to samples (leaves, twigs, etc.) formed in a single growing season.


Radiocarbon ◽  
2014 ◽  
Vol 56 (4) ◽  
pp. S85-S92 ◽  
Author(s):  
Pearce Paul Creasman

A fundamental aspect of ancient Egyptian history remains unresolved: chronology. Egyptologists (and researchers in related fields that synchronize their studies with Egypt) currently rely on a variety of insufficiently precise methodologies (king lists, radiocarbon dating, etc.) from which to derive seemingly “absolute” dates. The need for genuine precision has been recognized for a century, as has the potential solution: dendrochronology. This manuscript presents a case for further progress toward the construction of a tree-ring chronology for ancient Egypt.


Forests ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
Anna Cedro ◽  
Bernard Cedro

Intermediate hawthorn (Crataegus × media Bechst.) is broadly distributed in Europe but very rarely examined by dendrochronologists. In NW Poland, it is one of three naturally occurring hawthorn species, growing mainly at forest margins, along roads, in mid-field woodlots, and on uncultivated land. Biocenotically, it is a very valuable species. This study aimed to determine the age of trees, tree-ring dynamics, and growth–climate relationship for intermediate hawthorn. Signature years were also determined. Samples for analysis were collected from 22 trees growing in a typical agricultural landscape in a monospecific mid-field woodlot comprised of several hundred specimens of various ages and forms (shrubs and trees). Using classic methods of dendrochronological dating, a 40-year long chronology spanning 1981–2020 was constructed. The radial growth rate of intermediate hawthorn is comparable to other tree species forming stands in NW Poland and equals 2.41 mm/year. Considerable intersubject variability is noted, from 1.48 to 4.44 mm/year. The chronology was also used for dendroclimatological analyses, including correlation and response function and signature years. Of the meteorological parameters analyzed, annual incremental growth in hawthorn is the most strongly shaped by precipitation totals from May to August of the current vegetation year: high rainfall favors the formation of wide tree-rings. Statistically significant growth–climate relationships were also obtained for winter months (December of the preceding vegetation year, January and February), for which period negative correlation and regression values are noted for air temperature and insolation. Furthermore, high precipitation, low-temperature and low insolation late in the preceding vegetation year (especially in August) make a positive influence on the condition of trees in the upcoming growing season. Signature year analysis clearly pointed to precipitation as the dominant factor in shaping tree-rings in the studied hawthorn population. As there are no dendrochronological papers concerning indigenous hawthorn species, future studies should be expanded to include diverse geographic locations and habitat conditions and should include all three species of hawthorn occurring in Poland.


Sign in / Sign up

Export Citation Format

Share Document