scholarly journals Assessment of CFD turbulence models for free surface flow simulation and 1-D modelling for water level calculations over a broad-crested weir floodway

Water SA ◽  
2019 ◽  
Vol 45 (3 July) ◽  
Author(s):  
Ahmed M Helmi

Floodways, where a road embankment is permitted to be overtopped by flood water, are usually designed as broad-crested weirs. Determination of the water level above the floodway is crucial and related to road safety. Hydraulic performance of floodways can be assessed numerically using 1-D modelling or 3-D simulation using computational fluid dynamics (CFD) packages. Turbulence modelling is one of the key elements in CFD simulations. A wide variety of turbulence models are utilized in CFD packages; in order to identify the most relevant turbulence model for the case in question, 96 3-D CFD simulations were conducted using Flow-3D package, for 24 broad-crested weir configurations selected based on experimental data from a previous study. Four turbulence models (one-equation, k-ε, RNG k-ε, and k-ω) ere examined for each configuration. The volume of fluid (VOF) algorithm was adopted for free water surface determination. In addition, 24 1-D simulations using HEC-RAS-1-D were conducted for comparison with CFD results and experimental data. Validation of the simulated water free surface profiles versus the experimental measurements was carried out by the evaluation of the mean absolute error, the mean relative error percentage, and the root mean square error. It was concluded that the minimum error in simulating the full upstream to downstream free surface profile is achieved by using one-equation turbulence model with mixing length equal to 7% of the smallest domain dimension. Nevertheless, for the broad-crested weir upstream section, no significant difference in accuracy was found between all turbulence models and the one-dimensional analysis results, due to the low turbulence intensity at this part. For engineering design purposes, in which the water level is the main concern at the location of the flood way, the one-dimensional analysis has sufficient accuracy to determine the water level.

1978 ◽  
Vol 100 (1) ◽  
pp. 47-54 ◽  
Author(s):  
D. E. Cormack ◽  
L. G. Leal ◽  
J. H. Seinfeld

A four-parameter model is presented for the triple velocity correlation which appears in the mean Reynolds stress tensor equations of turbulence. A comparison with the closure models of Hanjalic and Launder [1], Daly and Harlow [2], Wyngaard, Cote´, and Rao [3], and Shir [4], in the context of existing experimental data, indicates that the proposed model is superior. It is also demonstrated that, of the one-parameter models, the Hanjalic-Launder model best approximates the data. Due to the complexity of the four-parameter representation, it is recommended that the Hanjalic-Launder model be used for computational purposes.


2012 ◽  
Vol 16 (12) ◽  
pp. 1346-1352 ◽  
Author(s):  
Renata C. dos Reis ◽  
Ivano A. Devilla ◽  
Diego P. R. Ascheri ◽  
Ana C. O. Servulo ◽  
Athina B. M. Souza

The objective of this paper was to model the drying curves of the leaves of basil (Ocimum basilicum L.) in the infrared at temperatures of 50, 60, 70 and 80 ºC and to evaluate the influence of drying temperature on the color of dried leaves. Drying was conducted in infrared dryer with temperature and greenhouse air circulation. Experimental data were fitted to eight mathematical models. The magnitude of the coefficient of determination (R²), the mean relative error (P), the estimated mean error (SE) and chisquare test (χ2) were used to verify the degree of fitness of the models. From the study it was concluded that: a) the behavior of the drying curves of basil leaves was similar to most agricultural products, the drying times in the infrared were less than the drying times in an oven with air circulation, b) the mathematical drying model proposed by Midilli et al. (2002) was the one which best adjusted to the experimental data, c) the diffusion coefficient ranged from 9.10 x 10-12 to 2.92 x 10-11 m² s-1 and d) the color of the samples was highly influenced by drying, becoming darker due to loss of chlorophyll with increasing temperature.


Author(s):  
Deoras Prabhudharwadkar ◽  
Chris Bailey ◽  
Martin Lopez de Bertodano ◽  
John R. Buchanan

This paper describes in detail the assessment of the CFD code CFX to predict adiabatic liquid-gas two-phase bubbly flow. This study has been divided into two parts. In the first exercise, the effect of Lift Force, Wall Force and the Turbulent Diffusion Force have been assessed using experimental data from the literature for air-water upward bubbly flows through a pipe. The data used here had a characteristic near wall void peaking which was largely influenced by the joint action of the three forces mentioned above. The simulations were performed with constant bubble diameter assuming no bubble interactions. This exercise resulted in selection of the most appropriate closure form and closure coefficients for the above mentioned forces for the range of flow conditions chosen. In the second exercise, the One-Group Interfacial Area Transport equation was introduced in the two-fluid model of CFX. The interfacial area density plays important role in the correct prediction of interfacial mass, momentum and energy transfer and is affected by bubble breakup and coalescence processes in adiabatic flows. The One-Group Interfacial Area Transport Equation (IATE) has been developed and implemented for one-dimensional models and validated using cross-sectional area averaged experimental data over the last decade by various researchers. The original one-dimensional model has been extended to multidimensional flow predictions in this study and the results are presented in this paper. The paper also discusses constraints posed by the commercial CFD code CFX and the solutions worked out to obtain the most accurate implementation of the model.


Volume 4 ◽  
2004 ◽  
Author(s):  
Branislav Basara ◽  
Ales Alajbegovic ◽  
Decan Beader

The paper presents calculations of flow in a mixing vessel stirred by a six-blade Rushton impeller. Mathematical model used in computations is based on the ensemble averaged conservation equations. An efficient finite-volume method based on unstructured grids with rotating sliding parts composed of arbitrary polyhedral elements is used together with various turbulence models. Besides the standard k-ε model which served as a reference, k-ε-v2 model (Durbin, 1995) and the recently proposed hybrid EVM/RSM turbulence model (Basara & Jakirlic, 2003) were used in the calculations. The main aim of the paper is to investigate if more advanced turbulence models are needed for this type of CFD applications. The results are compared with the available experimental data.


2013 ◽  
Vol 33 (2) ◽  
pp. 249-257 ◽  
Author(s):  
Alberto Colombo ◽  
Lívia A. Alvarenga ◽  
Myriane S. Scalco ◽  
Randal C. Ribeiro ◽  
Giselle F. Abreu

The increasing demand for water resources accentuates the need to reduce water waste through a more appropriate irrigation management. In the particular case of irrigated coffee planting, which in recent years presented growth with the predominance of drip irrigation, the improvement of drip irrigation management techniques is a necessity. The proper management of drip irrigation depends on the knowledge of the spatial pattern of soil moisture distribution inside the wetted strip formed under the irrigation lines. In this study, grids of 24 tensiometers were used to determine the water storage within the wetted strip formed under drippers, with a 3.78 L h-1 discharge, evenly spaced by 0.4 m, subjected to two different management criteria (fixed irrigation interval and 60 kPa tension). Estimates of storage based on a one-dimensional analysis, that only considers depth variations, were compared with two-dimensional estimates. The results indicate that for high-frequency irrigation the one-dimensional analysis is not appropriate. However, under less frequent irrigation, the two-dimensional analysis is dispensable, being the one-dimensional sufficient for calculating the water volume stored in the wetted strip.


1977 ◽  
Vol 83 (3) ◽  
pp. 547-567 ◽  
Author(s):  
R. M. Williams ◽  
C. A. Paulson

High-frequency fluctuations in temperature and velocity were measured at a height of 2 m above a harvested, nearly level field of rye grass. Conditions were both stably and unstably stratified. Reynolds numbers ranged from 370000 to 740000. Measurements of velocity were made with a hot-wire anemometer and measurements of temperature with a platinum resistance element which had a diameter of 0[sdot ]5 μm and a length of 1 mm. Thirteen runs ranging in length from 78 to 238 s were analysed.Spectra of velocity fluctuations are consistent with previously reported universal forms. Spectra of temperature, however, exhibit an increase in slope with increasing wavenumber as the maximum in the one-dimensional dissipation spectrum is approached. The peak of the one-dimensional dissipation spectrum for temperature fluctuations occurs at a higher wavenumber than that of simultaneous spectra of the dissipation of velocity fluctuations. It is suggested that the change in slope of the temperature spectra and the dissimilarity between temperature and velocity spectra may be due to spatial dissimilarity in the dissipation of temperature and velocity fluctuations. The temperature spectra are compared with a theoretical prediction for fluids with large Prandtl number, due to Batchelor (1959). Even though air has a Prandtl number of 0[sdot ]7, the observations are in qualitative agreement with predictions of the theory. The non-dimensional wavenumber at which the increase in slope occurs is about 0[sdot ]02, in good agreement with observations in the ocean reported by Grantet al. (1968).For the two runs for which the stratification was stable, the normalized spectra of the temperature derivative fall on average slightly below the mean of the spectra of the remaining runs in the range in which the slope is approximately one-third. Hence the Reynolds number may not have always been sufficiently high to satisfy completely the conditions for an inertial subrange.Universal inertial-subrange constants were directly evaluated from one-dimensional dissipation spectra and found to be 0[sdot ]54 and 1[sdot ]00 for velocity and temperature, respectively. The constant for velocity is consistent with previously reported values, while the value for temperature differs from some of the previous direct estimates but is only 20% greater than the mean of the indirect estimates. This discrepancy may be explained by the neglect in the indirect estimates of the divergence terms in the conservation equation for the variance of temperature fluctuations. There is weak evidence that the one-dimensional constant, and hence the temperature spectra, may depend upon the turbulence Reynolds number, which varied from 1200 to 4300 in the observations reported.


Author(s):  
Narmin B. Hushmandi ◽  
Per Askebjer ◽  
Magnus Genrup

Abstract Despite a wealth of sophisticated CFD-methods, most designs are still based on one-dimensional and two-dimensional inviscid analytical tools. In such methods, realistic loss and angle assessment are indeed critical in order to arrive at correct loading, flow coefficient and reaction. The selected values are normally retained through the detailed design sequence for each iteration. This means that the throat sizing and hence the gauge angle is largely based on the early design work within the through-flow environment. Even one-degree error in angle estimation will turn into a rather large capacity error. For most designs, the exchange rate between capacity and gauge angle is on the order of 3–5 percent, per degree exit angle. In a previous publication, a methodology and equations were presented to assess the exit flow in an axial turbine blade row by Mamaev in Russian nomenclature and the tangential coordinate system. The approach, provided a unified and flow-physics based method for assessing exit angles from the geometry features like gauge angle, uncovered turning and flow features like Laval number, etc. Analysis of those formulas showed good agreement with physical flow pattern in real cascades for sub and transonic blade cascades. In this work, the same basic principal procedure is followed by employing the more international agreed nomenclature of blades such as an axial reference plane and Mach number. In the current work, the one-dimensional analysis results were compared with the three dimensional numerical modelling of a full annulus two-stage turbine. Analysis of the results showed the inherent unsteadiness specially outside the rotor blade cascades, however, comparison of the mass averaged exit angle with the one dimensional analysis showed satisfactory agreement.


1999 ◽  
Vol 36 (02) ◽  
pp. 102-112
Author(s):  
Michael D. A. Mackney ◽  
Carl T. F. Ross

Computational studies of hull-superstructure interaction were carried out using one-, two-and three-dimensional finite element analyses. Simplification of the original three-dimensional cases to one- and two-dimensional ones was undertaken to reduce the data preparation and computer solution times in an extensive parametric study. Both the one- and two-dimensional models were evaluated from numerical and experimental studies of the three-dimensional arrangements of hull and superstructure. One-dimensional analysis used a simple beam finite element with appropriately changed sections properties at stations where superstructures existed. Two-dimensional analysis used a four node, first order quadrilateral, isoparametric plane elasticity finite element, with a corresponding increase in the grid domain where the superstructure existed. Changes in the thickness property reflected deck stiffness. This model was essentially a multi-flanged beam with the shear webs representing the hull and superstructure sides, and the flanges representing the decks One-dimensional models consistently and uniformly underestimated the three-dimensional behaviour, but were fast to create and run. Two-dimensional models were also consistent in their assessment, and considerably closer in predicting the actual behaviours. These models took longer to create than the one-dimensional, but ran in very much less time than the refined three-dimensional finite element models Parametric insights were accomplished quickly and effectively with the simplest model and processor, but two-dimensional analyses achieved closer absolute measure of the displacement behaviours. Although only static analysis with simple loading and support conditions were presented, it is believed that similar benefits would be found for other loadings and support conditions. Other engineering components and structures may benefit from similarly judged simplification using one- and two-dimensional models to reduce the time and cost of preliminary design.


Author(s):  
Kaloki Nabutola ◽  
Sandra Boetcher

Abstract Vehicle aerodynamics plays an important role in reducing fuel consumption. The underbody contributes to around 50% of the overall drag of a vehicle. As part of the underbody, the wheels and wheelhouses contribute to approximately 25-30% of the overall drag of a vehicle. As a result, wheel aerodynamics studies have been gaining popularity. However, a consensus of an appropriate turbulence model has not been reached, partially due to the lack of experiments appropriate for turbulence model validation studies for this type of flow. Seven turbulence models were used to simulate the flow within the wheelhouse of a simplified vehicle body, and results were shown to be incongruous with commonly used experimental data. The performance of each model was evaluated by comparing the aerodynamic coefficients obtained using computational fluid dynamics (CFD) to data collected from the Fabijanic wind tunnel experiments. The various turbulence models generally agreed with each other when determining average values, such a mean drag and lift coefficients, even if the particular values did not fall within the uncertainty of the experiment; however, they exhibited differences in the level of resolution in the flow structures within the wheelhouse. These flow structures are not able to be validated with currently available experimental data. Properly resolving flow structures is important when implementing flow control devices to reduce drag. Results from this study emphasize the need for spatially and time-resolved experiments, especially for validating LES and DES for flow within a wheelhouse.


2018 ◽  
Vol 11 (4) ◽  
pp. 2375-2393 ◽  
Author(s):  
Daniel J. Zawada ◽  
Landon A. Rieger ◽  
Adam E. Bourassa ◽  
Douglas A. Degenstein

Abstract. Measurements of limb-scattered sunlight from the Ozone Mapping and Profiler Suite Limb Profiler (OMPS-LP) can be used to obtain vertical profiles of ozone in the stratosphere. In this paper we describe a two-dimensional, or tomographic, retrieval algorithm for OMPS-LP where variations are retrieved simultaneously in altitude and the along-orbital-track dimension. The algorithm has been applied to measurements from the center slit for the full OMPS-LP mission to create the publicly available University of Saskatchewan (USask) OMPS-LP 2D v1.0.2 dataset. Tropical ozone anomalies are compared with measurements from the Microwave Limb Sounder (MLS), where differences are less than 5 % of the mean ozone value for the majority of the stratosphere. Examples of near-coincident measurements with MLS are also shown, and agreement at the 5 % level is observed for the majority of the stratosphere. Both simulated retrievals and coincident comparisons with MLS are shown at the edge of the polar vortex, comparing the results to a traditional one-dimensional retrieval. The one-dimensional retrieval is shown to consistently overestimate the amount of ozone in areas of large horizontal gradients relative to both MLS and the two-dimensional retrieval.


Sign in / Sign up

Export Citation Format

Share Document