CLoVER: an alterntive concept for damage interrogation in structural health monitoring systems

2009 ◽  
Vol 113 (1144) ◽  
pp. 339-356 ◽  
Author(s):  
K. I. Salas ◽  
C. E. S. Cesnik

AbstractStructural Health Monitoring (SHM) is the component of damage prognosis systems responsible for interrogating a structure to detect, locate, and identify any damage present. Guided wave (GW) testing methods are attractive for this application due to the GW ability to travel over long distances with little attenuation and their sensitivity to different damage types. The Composite Long-range Variable-direction Emitting Radar (CLoVER) transducer is introduced as an alternative concept for efficient damage interrogation in GW SHM systems. This transducer has an overall ring geometry, but is composed of individual wedge-shaped anisotropic piezocomposite sectors that can be individually excited to interrogate the structure in a particular direction. The transducer is shown to produce actuation amplitudes larger than those of a similarly sized ring configuration for the same electric current input. The electrode pattern design used allows each sector to act as an independent actuator and sensor element, decreasing the number of separate transducers needed for inspection. The fabrication and characterisation procedures of these transducers are described, and their performance is shown to be similar to that of conventional piezocomposite transducers. Experimental studies of damage detection demonstrating the proposed interrogation approach are also presented for simulated structural defects.

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3958 ◽  
Author(s):  
Muntazir Abbas ◽  
Mahmood Shafiee

Ultrasonic guided wave (UGW) is one of the most commonly used technologies for non-destructive evaluation (NDE) and structural health monitoring (SHM) of structural components. Because of its excellent long-range diagnostic capability, this method is effective in detecting cracks, material loss, and fatigue-based defects in isotropic and anisotropic structures. The shape and orientation of structural defects are critical parameters during the investigation of crack propagation, assessment of damage severity, and prediction of remaining useful life (RUL) of structures. These parameters become even more important in cases where the crack intensity is associated with the safety of men, environment, and material, such as ship’s hull, aero-structures, rail tracks and subsea pipelines. This paper reviews the research literature on UGWs and their application in defect diagnosis and health monitoring of metallic structures. It has been observed that no significant research work has been convened to identify the shape and orientation of defects in plate-like structures. We also propose an experimental research work assisted by numerical simulations to investigate the response of UGWs upon interaction with cracks in different shapes and orientations. A framework for an empirical model may be considered to determine these structural flaws.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wang Ziping ◽  
Xiong Xiqiang ◽  
Qian Lei ◽  
Wang Jiatao ◽  
Fei Yue ◽  
...  

In the application of Structural Health Monitoring (SHM) methods and related technologies, the transducer used for electroacoustic conversion has gradually become a key component of SHM systems because of its unique function of transmitting structural safety information. By comparing and analyzing the health and safety of large-scale structures, the related theories and methods of Structural Health Monitoring (SHM) based on ultrasonic guided waves are studied. The key technologies and research status of the interdigital guided wave transducer arrays which used for structural damage detection are introduced. The application fields of interdigital transducers are summarized. The key technical and scientific problems solved by IDT for Structural Damage Monitoring (SHM) are presented. Finally, the development of IDT technology and this research project are summarised.


Sign in / Sign up

Export Citation Format

Share Document