scholarly journals Commutative rings whose factors have Artinian rings of quotients

1983 ◽  
Vol 28 (1) ◽  
pp. 9-12 ◽  
Author(s):  
William D. Blair

Let R be a commutative ring with unity. Then every factor ring of R has an Artinian total quotient ring if and only if R is a direct sum of one-dimensional Noetherian domains and local Artinian rings.

2014 ◽  
Vol 14 (01) ◽  
pp. 1550008 ◽  
Author(s):  
A. Ghorbani ◽  
Z. Nazemian

In this paper, we define and study a valuation dimension for commutative rings. The valuation dimension is a measure of how far a commutative ring deviates from being valuation. It is shown that a ring R with valuation dimension has finite uniform dimension. We prove that a ring R is Noetherian (respectively, Artinian) if and only if the ring R × R has (respectively, finite) valuation dimension if and only if R has (respectively, finite) valuation dimension and all cyclic uniserial modules are Noetherian (respectively, Artinian). We show that the class of all rings of finite valuation dimension strictly lies between the class of Artinian rings and the class of semi-perfect rings.


1973 ◽  
Vol 25 (5) ◽  
pp. 1002-1005
Author(s):  
Thomas Cheatham

In [4, Theorem 4.1, p. 45], Enochs characterizes the integral domains with the property that the direct product of any family of torsion-free covers is a torsion-free cover. In a setting which includes integral domains as a special case, we consider the corresponding question for direct sums. We use the notion of torsion introduced by Goldie [5]. Among commutative rings, we show that the property “any direct sum of torsion-free covers is a torsion-free cover“ characterizes the semi-simple Artinian rings.


1975 ◽  
Vol 16 (1) ◽  
pp. 32-33 ◽  
Author(s):  
Victor P. Camillo

All rings considered here have units. A (non-commutative) ring is right Goldieif it has no infinite direct sums of right ideals and has the ascending chain condition on annihilator right ideals. A right ideal A is an annihilator if it is of the form {a ∈ R/xa = 0 for all x ∈ X}, where X is some subset of R. Naturally, any noetherian ring is Goldie, but so is any commutative domain, so that the converse is not true. On the other hand, since any quotient ring of a noetherian ring is noetherian, it is true that every quotient is Goldie. A reasonable question therefore is the following: must a ring, such that every quotient ring is Goldie, be noetherian? We prove the following theorem:Theorem. A commutative ring is noetherian if and only if every quotient is Goldie.


Author(s):  
D. Kirby

In (1) and (2) we studied a lattice of extension rings associated with a commutative ring R with identity. When R, M is a one-dimensional Cohen-Macaulay local ring the elements of are just those integral extensions of R contained in the total quotient ring T(R) and such that lengthR(S/R) is finite. Experiments with local rings of singular points on algebraic curves indicate that only the simplest singularities give rise to finite lattices. So the problem arises as to which local rings R give rise to which finite lattices. In later papers this problem will be investigated in detail, at least when R is of low embedding dimension. The purpose of the present note is to establish some general results which indicate the size of the problem.


1980 ◽  
Vol 32 (6) ◽  
pp. 1277-1287 ◽  
Author(s):  
B. Sarath

The main object of this paper is to study when infective noetherian modules are artinian. This question was first raised by J. Fisher and an example of an injective noetherian module which is not artinian is given in [9]. However, it is shown in [4] that over commutative rings, and over hereditary noetherian P.I rings, injective noetherian does imply artinian. By combining results of [6] and [4] it can be shown that the above implication is true over any noetherian P.I ring. It is shown in this paper that injective noetherian modules are artinian over rings finitely generated as modules over their centers, and over semiprime rings of Krull dimension 1. It is also shown that every injective noetherian module over a P.I ring contains a simple submodule. Since any noetherian injective module is a finite direct sum of indecomposable injectives it suffices to study when such injectives are artinian. IfQis an injective indecomposable noetherian module, thenQcontains a non-zero submoduleQ0such that the endomorphism rings ofQ0and all its submodules are skewfields. Over a commutative ring, such aQ0is simple. In the non-commutative case very little can be concluded, and many of the difficulties seem to arise here.


2001 ◽  
Vol 43 (1) ◽  
pp. 103-111 ◽  
Author(s):  
Patrick F. Smith

The radical of a module over a commutative ring is the intersection of all prime submodules. It is proved that if R is a commutative domain which is either Noetherian or a UFD then R is one-dimensional if and only if every (finitely generated) primary R-module has prime radical, and this holds precisely when every (finitely generated) R-module satisfies the radical formula for primary submodules.


Author(s):  
Jawad Abuhlail ◽  
Hamza Hroub

Let [Formula: see text] be a commutative ring and [Formula: see text] a nonzero [Formula: see text]-module. We introduce the class of pseudo-strongly[Formula: see text]PS[Formula: see text]-hollow submodules of [Formula: see text]. Inspired by the theory of modules with secondary representations, we investigate modules which can be written as finite sums of PS-hollow submodules. In particular, we provide existence and uniqueness theorems for the existence of minimal PS-hollow strongly representations of modules over Artinian rings.


2012 ◽  
Vol 11 (03) ◽  
pp. 1250049 ◽  
Author(s):  
F. ALINIAEIFARD ◽  
M. BEHBOODI

Let R be a commutative ring and 𝔸(R) be the set of ideals with nonzero annihilators. The annihilating-ideal graph of R is defined as the graph 𝔸𝔾(R) with the vertex set 𝔸(R)* = 𝔸\{(0)} and two distinct vertices I and J are adjacent if and only if IJ = (0). We investigate commutative rings R whose annihilating-ideal graphs have positive genus γ(𝔸𝔾(R)). It is shown that if R is an Artinian ring such that γ(𝔸𝔾(R)) < ∞, then either R has only finitely many ideals or (R, 𝔪) is a Gorenstein ring with maximal ideal 𝔪 and v.dimR/𝔪𝔪/𝔪2= 2. Also, for any two integers g ≥ 0 and q > 0, there are only finitely many isomorphism classes of Artinian rings R satisfying the conditions: (i) γ(𝔸𝔾(R)) = g and (ii) |R/𝔪| ≤ q for every maximal ideal 𝔪 of R. Also, it is shown that if R is a non-domain Noetherian local ring such that γ(𝔸𝔾(R)) < ∞, then either R is a Gorenstein ring or R is an Artinian ring with only finitely many ideals.


2018 ◽  
Vol 17 (07) ◽  
pp. 1850125
Author(s):  
T. Tamizh Chelvam ◽  
K. Selvakumar ◽  
V. Ramanathan

Let [Formula: see text] be a commutative ring, [Formula: see text] the set of all ideals of [Formula: see text] and [Formula: see text], a subset of [Formula: see text]. The Cayley sum graph of ideals of [Formula: see text], denoted by Cay[Formula: see text], is a simple undirected graph with vertex set is the set [Formula: see text] and, for any two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text] or [Formula: see text], for some [Formula: see text] in [Formula: see text]. In this paper, we study connectedness, Eulerian and Hamiltonian properties of Cay[Formula: see text]. Moreover, we characterize all commutative Artinian rings [Formula: see text] whose Cay[Formula: see text] is toroidal.


2008 ◽  
Vol 07 (02) ◽  
pp. 195-209 ◽  
Author(s):  
W. D. BURGESS ◽  
R. RAPHAEL

Commutative clean rings and related rings have received much recent attention. A ring R is clean if each r ∈ R can be written r = u + e, where u is a unit and e an idempotent. This article deals mostly with the question: When is the classical ring of quotients of a commutative ring clean? After some general results, the article focuses on C(X) to characterize spaces X when Qcl(X) is clean. Such spaces include cozero complemented, strongly 0-dimensional and more spaces. Along the way, other extensions of rings are studied: directed limits and extensions by idempotents.


Sign in / Sign up

Export Citation Format

Share Document