Life history and feeding biology of the predatory thrips, Aleurodothrips fasciapennis (Thysanoptera: Phlaeothripidae)

1998 ◽  
Vol 88 (3) ◽  
pp. 351-357 ◽  
Author(s):  
D.M. Watson ◽  
T.Y. Du ◽  
M. Li ◽  
J.J. Xiong ◽  
D.G. Liu ◽  
...  

AbstractDetails of the life history, the effects of relative humidity and temperature on survival and reproduction, and the predatory ability of Aleurodothrips fasciapennis Franklin were examined under laboratory conditions. Stage-specific development and adult longevity were similar between sexes, and the adult sex ratio was 1:1. Females laid 23.3 ± 18.0 eggs of which 83% hatched. The survival rate of first instars to adulthood was 82%. The intrinsic rate of natural increase (rm) was 0.04, assuming a zero or 5.4 day pre-oviposition interval. Temperature did not affect the proportion of eggs that hatched, the proportion of first instars surviving to adulthood or adult sex ratios. However, female fecundity was dependent on temperature being highest at 24 ndash 28°C. Relative humidity did not affect adult sex ratio or female fecundity but the proportion of eggs hatched and the survival of first instars to adulthood increased as relative humidity increased. Few eggs hatched when relative humidity was <65%. Larval and adult female A. fasciapennis were voracious feeders but the number of prey killed per progeny was high, suggesting A. fasciapennis was inefficient at converting prey into progeny biomass. The potential value of A. fasciapennis as a biocontrol agent of Aonidiella aurantii (Maskell) on Australian citrus is discussed in terms of its rm, prey killing power and environmental adaptability. It is concluded that population growth of A. fasciapennis should exceed that of A. aurantii under field conditions but A. fasciapennis may be of little value against A. aurantii on citrus grown under conditions of high temperature and low humidity, or when prey densities are low.

2017 ◽  
Vol 22 (2) ◽  
pp. 170 ◽  
Author(s):  
Kaori Tamura ◽  
Katsura Ito

Spider mites show various life types characterized by spinning behavior, web structure, and sociality. Individuals of the woven-nest (WN) species construct silken nests on the undersurface of host leaves, inside which they develop and reproduce. This nesting behavior may be related with the defense mechanism and life history traits of mites in the stable habitat (e.g., evergreen trees). If the WN life type affects the life-history traits, these traits may be similar within WN species. The WN species are known to be fragmentarily distributed in diverse genera, Stigmaeopsis, Schizotetranychus, Eotetranychus, and Oligonychus, and their life types are suspected to have secondarily converged. However, their life histories have not been elucidated except for several species in specific genera. To supply the information in Schizotetranychus, we investigated the demographic traits and the sex ratio of Schizotetranychus brevisetosus, which shows the WN life type and lives on the evergreen Japanese blue oak Quercus glauca. We estimated the development time of females as 22.6 ± 3.1 days (mean ± SD, n = 22) and the fecundity of fertilized females as 13.7 ± 5.9 (n = 37) at 25°C. The sex ratio of males to the total number of adults at emergence was low (0.072). The intrinsic rate of natural increase (rm) was estimated as 0.060 day-1, one of the lowest ever reported for spider mites at the same temperature. The present results were similar to other WN species in that fecundity and male ratio were low. 


1983 ◽  
Vol 115 (1) ◽  
pp. 93-105 ◽  
Author(s):  
John V. Boyne ◽  
Fred P. Hain

AbstractExperiments were conducted on Fraser fir, Abies fraseri (Pursh) Poir, seedlings or cut terminals. Results indicate that Oligonychus ununguis (Jacobi) responds most favorably to temperatures approximating 26 °C and to relative humidity levels approaching 50 to 60%. Developmental time, time to 50% mortality, net reproductive rate, mean generation time, intrinsic rate of natural increase, finite rate of increase, and days for populations to double were computed for each temperature and relative humidity regime. Simulated rainfall severely limits population density on Fraser fir seedlings.


2021 ◽  
Author(s):  
Julliana Barretto ◽  
Martha L Baena ◽  
Israel Huesca Domínguez ◽  
Federico Escobar

Abstract While theory suggests that at conception the sex ratio should be balanced (1:1), this can be variable across space and time in wild populations. Currently, studies of the environmental factors that regulate adult sex ratio (ASR) in species with different life-history traits are scarce. Using capture-recapture over a year, we analyzed the influence of habitat type (forest and non-forest) and season (rainy and dry) on variation in ASR, male aggregation and the trajectory movement of two dung beetle species with different life-history traits: Deltochilum mexicanum (a hornless roller species) and Dichotomius satanas (a tunneler species with horns on its head and thorax). We found opposite tendencies. The D. mexicanum population tends to be female-biased, but the population of D. satanas tends to be predominantly male, and observed values were not related to habitat type or season. However, the 95% confidence intervals estimated were highly variable between seasons depending on habitat. On examining the monthly variation in ASR for both habitats, we found that it depends on the species. In addition, male aggregation differed between species depending on habitat type and season, and species movement patterns were closely related to their habitat preferences. Based on our results, we argue that comparative population studies of species with different life-history traits are necessary to understand the variation in demographic parameters as well as its ecological and evolutionary implications in the face of spatial and climatic environmental variation.


Insects ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 133 ◽  
Author(s):  
Anna Papach ◽  
Jérémy Gonthier ◽  
Geoffrey R. Williams ◽  
Peter Neumann

The sex ratio of sexually reproducing animal species tends to be 1:1, which is known as Fisher’s principle. However, differential mortality and intraspecific competition during pupation can result in a biased adult sex ratio in insects. The female-biased sex ratio of small hive beetles (SHBs) is known from both laboratory and field studies, but the underlying reasons are not well understood. Here, we used laboratory mass and individual pupation to test if differential mortality between sexes and/or intraspecific interactions can explain this sex ratio. The data show a significant female-biased adult sex ratio in both mass and individual rearing, even when assuming that all dead individuals were males. Our results therefore suggest that neither differential mortality during pupation nor intraspecific interactions are likely to explain the female-biased sex ratio of freshly emerged adult SHBs. We regard it as more likely that either competition during the larval feeding stage or genetic mechanisms are involved. In addition, we compared our data with previously published data on the sex ratio of both freshly emerged and field-collected SHBs to investigate possible gender differences in adult longevity. The data show a significantly greater female bias in the sex ratio upon emergence, compared to field-collected SHBs, suggesting that adult females have a shorter longevity.


1990 ◽  
Vol 68 (3) ◽  
pp. 547-555 ◽  
Author(s):  
Adrian Hailey

Survival, recruitment, and dynamics of adult Testudo hermanni at Alyki (northern Greece) were studied from 1980 to 1988. Recruitment of adult males was greater than that of females owing to their shorter time to maturity (9 vs. 11 years); recruitment of subadults (6 years old) was equal in males and females. Mean annual survival was slightly greater in males (0.914) than females (0.877), equivalent to mean adult longevity values of 11.6 and 8.1 years, respectively. Excluding tortoises that die before maturity, male and female T. hermanni are mature for about 56 and 42% of their life, respectively. Generation time was roughly twice the age at maturity, and three times the age at which secondary sexual characters develop, a pattern which may apply to other tortoises. The combination of adult survival and recruitment should lead to a stable sex ratio (males/females) of 2.1. The adult sex ratio was higher than this, but decreasing, from4.1 in 1982to3.0 in 1986, with an increase in the female population; the number of males was stable. The observed sex ratio showed a similar decline and a further fall to 2.4 in 1988. The cause of the lower survival rate of females compared with males is proposed to be damage during courtship attempts. The courtship behaviour and related anatomy of T. hermanni are compared with those of T. graeca, a species with even population sex ratios. The level of male-induced female mortality would depend on population density; the increasing number of females during the study follows the approximate halving of population density in 1980.


Biologia ◽  
2007 ◽  
Vol 62 (4) ◽  
Author(s):  
Nidhi Gupta ◽  
Sandeep Kumar ◽  
Arun Saxena

AbstractThe incubation period of eggs, duration of three nymphal instars, adult longevity and the daily egg-deposition rate of the ischnoceran Phthiraptera, Brueelia amandavae, were determined by rearing the louse in vitro (35 ± 1°C, 75–82% RH, feather diet). The data obtained were utilized for life table construction and determination of the intrinsic rate of natural increase (0.031 per day) and the doubling time (23.45 days) of the louse population. The doubling time of the louse in in vivo experiments was 21.5 days.


2017 ◽  
Author(s):  
Luke J. Eberhart-Phillips ◽  
Clemens Küpper ◽  
Tom E. X. Miller ◽  
Medardo Cruz-López ◽  
Kathryn H. Maher ◽  
...  

ABSTRACTAdult sex ratio (ASR) is a central concept in population biology and a key factor in sexual selection, yet why do most demographic models ignore sex-biases? Vital rates often vary between the sexes and across life history, but their relative contributions to ASR variation remain poorly understood—an essential step to evaluate sex ratio theories in the wild and inform conservation. Here we combine structured two-sex population models with individual-based mark-recapture data from an intensively monitored polygamous population of snowy plovers. We show that a strongly male-biased ASR is primarily driven by sex-specific survival of juveniles, rather than adults or dependent offspring. This provides empirical support for theories of unbiased sex allocation when sex-differences in survival arise after the period of parental investment. Importantly, a conventional model ignoring sex-biases significantly overestimated population viability. We suggest that sex-specific population models are essential to understand the population dynamics of sexual organisms: reproduction and population growth is most sensitive to perturbations in survival of the limiting sex. Overall, our study suggests that sex-biased early survival may contribute towards mating system evolution and population persistence, with implications for both sexual selection theory and biodiversity conservation.SIGNIFICANCE STATEMENTSex biases are widespread in nature and represent a fundamental component of sexual selection and population biology—but at which point in life history do these biases emerge? Here we report a detailed individual-based demographic analysis of an intensively studied wild bird population to evaluate the origins of sex biases and their consequences on mating strategies and population dynamics. We document a strongly male-biased adult sex ratio, which is consistent with behavioral observations of female-biased polygamy. Notably, sex-biased juvenile, rather than adult survival, contributed most to the adult sex ratio. Sex-biases also strongly influenced population viability, which was significantly overestimated when sex ratio and mating system were ignored. Our study therefore has implications for both sexual selection theory and biodiversity conservation.


ENTOMON ◽  
2020 ◽  
Vol 45 (2) ◽  
pp. 129-134
Author(s):  
Aftab Ahmad

The ischnoceran lice, Goniocotes jirufti (Ansari, 1947) infesting the black partridge, Francolinus francolinus were reared in vitro condition (35 ± 1°C, 75-82% RH, at feather diet), to record the incubation period, adult longevity and daily egg rate. The data obtained from in vitro experimentation were used to construct the life table and to determine the intrinsic rate of natural increase (rm). The value of rm of aforesaid species was computed as 0.042. At this rate the doubling time of its population appeared to be 16.50 days. In comparison to the other species studied so far, G. jirufti seems to breed moderately.


1983 ◽  
Vol 115 (4) ◽  
pp. 399-415 ◽  
Author(s):  
Manfred Mackauer

AbstractThe reproductive and demographic statistics of Aphidius smithi Sharma & Subba Rao parasitizing third-instar pea aphids, Acyrthosiphon pisum Harris, were determined under constant laboratory conditions. At host densities of 5, 10, 20, 40, 60 or 100 aphids/day, the parasite lived an average of 7 days at 20.5 °C. At host densities of ≤20 aphids/day, the total number of eggs laid and the total number of hosts attacked were limited by the numbers of hosts available. Fecundity was highest with an average of 870 eggs/female at density 100; the maximum number of eggs laid by any female was 1770. Superparasitism was common at all densities, resulting in up to 84% (at density 5) of all eggs being wasted. The relationship between host density and the number of aphids attacked per egg laid was linear for densities of ≥20 aphids/day. The intrinsic rate of natural increase (r) varied with the host density. It reached maximum value at density 100, calculated as 0.358 female/female/day and assuming an overall sex ratio of 1:1 males:females. Regression equations describing r as a function of host density and parasite sex ratio are provided. It is shown that the potential rate of increase of A. smithi exceeds that of the pea aphid over a broad range of average conditions. The parasite's functional response was convex (Holling type II) and decelerated with increasing density. The intrinsic attack rate (a′) and handling time (Th) were estimated from the functional response curve as a′ = 6.62 days−1 and Th = 0.0033 day (4.7 min). The ‘random parasite’ equation satisfactorily predicted the number of aphids attacked at each density.


Sign in / Sign up

Export Citation Format

Share Document