Spatiotemporal expression profiling of the farnesyl diphosphate synthase genes in aphids and analysis of their associations with the biosynthesis of alarm pheromone

2018 ◽  
Vol 109 (3) ◽  
pp. 398-407 ◽  
Author(s):  
Y.-J. Cheng ◽  
Z.-X. Li

AbstractThe alarm behavior plays a key role in the ecology of aphids, but the site and molecular mechanism for the biosynthesis of aphid alarm pheromone are largely unknown. Farnesyl diphosphate synthase (FPPS) catalyzes the synthesis of FPP, providing the precursor for the alarm pheromone (E)-β-farnesene (EβF), and we speculate that FPPS is closely associated with the biosynthetic pathway of EβF. We firstly analyzed the spatiotemporal expression of FPPS genes by using quantitative reverse transcription-polymerase chain reaction, showing that they were expressed uninterruptedly from the embryonic stage to adult stage, with an obvious increasing trend from embryo to 4th-instar in the green peach aphid Myzus persicae, but FPPS1 had an overall significantly higher expression level than FPPS2; both FPPS1 and FPPS2 exhibited the highest expression in the cornicle area. This expression pattern was verified in Acyrthosiphon pisum, suggesting that FPPS1 may play a more important role in aphids and the cornicle area is most likely the site for EβF biosynthesis. We thus conducted a quantitative measurement of EβF in M. persicae by gas chromatography-mass spectrometry. The data obtained were used to perform an association analysis with the expression data, revealing that the content of EβF per aphid was significantly correlated with the mean weight per aphid (r = 0.8534, P = 0.0307) and the expression level of FPPS1 (r = 0.9134, P = 0.0109), but not with that of FPPS2 (r = 0.4113, P = 0.4179); the concentration of EβF per milligram of aphid was not correlated with the mean weight per aphid or the expression level of FPPS genes. These data suggest that FPPS1 may play a key role in the biosynthesis of aphid alarm pheromone.

2019 ◽  
Vol 109 (6) ◽  
pp. 821-830 ◽  
Author(s):  
C.-X. Sun ◽  
Z.-X. Li

AbstractThe major component of aphid alarm pheromone is (E)-β-farnesene (EβF), but the molecular mechanisms of EβF synthesis are poorly understood. Here we established a biological model to study the modulation of EβF synthesis in the bird cherry-oat aphid Rhopalosiphum padi by using quantitative polymerase chain reaction, gas chromatography/mass spectrometry and RNA interference. Our results showed that the rearing conditions significantly affected the weight of adult and modulated EβF synthesis in a transgenerational manner. Specifically, the quantity of EβF per milligram of aphid was significantly reduced in the individually reared adult or 1st-instar nymphs derived from 1-day-old adult reared individually, but EβF in the nymph derived from 2-day-old adult that experienced collective conditions returned to normal. Further study revealed that the production of EβF started in embryo and was extended to early nymphal stage, which was modulated by farnesyl diphosphate synthase genes (RpFPPS1 and RpFPPS2) and rearing conditions. Knockdown of RpFPPS1 and RpFPPS2 confirmed the role played by FPPS in the biosynthesis of aphid alarm pheromone. Our results suggested that the production of EβF starts at the embryo stage and is modulated by FPPS and rearing conditions in R. padi, which sheds lights on the modulatory mechanisms of EβF in the aphid.


2001 ◽  
Vol 133 (3) ◽  
pp. 389-397 ◽  
Author(s):  
E.B. Acar ◽  
J.C. Medina ◽  
M.L. Lee ◽  
G.M. Booth

AbstractA previous investigation from our laboratory showed that the odor of live green peach aphids, Myzus persicae (Sulzer), highly attracts the convergent lady beetle, Hippodamia convergens Guérin-Méneville. In this study, we isolated the odor and identified it as (E)-β-farnesene (an aphid alarm pheromone) using gas chromatography – mass spectrometry. The olfactory response of the convergent lady beetle to (E)-β-farnesene was investigated using an eight-arm air-flow olfactometer and tracing the pathways of the lady beetles. The results clearly indicate that H. convergens can perceive and orient to (E)-β-farnesene released by green peach aphids. These findings suggest that this species of lady beetle has evolved a sensory system for detecting the green peach aphid alarm pheromone as a means of finding its prey.


Insects ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 43 ◽  
Author(s):  
Daniel Peach ◽  
Regine Gries ◽  
Nathan Young ◽  
Robyn Lakes ◽  
Erin Galloway ◽  
...  

Plant sugar is an essential dietary constituent for mosquitoes, and hemipteran honeydew is one of the many forms of plant sugar that is important to mosquitoes. Many insects rely on volatile honeydew semiochemicals to locate aphids or honeydew itself. Mosquitoes exploit volatile semiochemicals to locate sources of plant sugar but their attraction to honeydew has not previously been investigated. Here, we report the attraction of female yellow fever mosquitoes, Aedes aegypti, to honeydew odorants from the green peach aphid, Myzus persicae, and the pea aphid, Acyrthosiphon pisum, feeding on fava bean, Vicia faba. We used solid phase micro-extraction and gas chromatography-mass spectrometry to collect and analyze headspace odorants from the honeydew of A. pisum feeding on V. faba. An eight-component synthetic blend of these odorants and synthetic odorant blends of crude and sterile honeydew that we prepared according to literature data all attracted female A. aegypti. The synthetic blend containing microbial odor constituents proved more effective than the blend without these constituents. Our study provides the first evidence for anemotactic attraction of mosquitoes to honeydew and demonstrates a role for microbe-derived odorants in the attraction of mosquitoes to essential plant sugar resources.


Genome ◽  
2008 ◽  
Vol 51 (7) ◽  
pp. 501-510 ◽  
Author(s):  
Yong-Lei Zhang ◽  
Zheng-Xi Li

Farnesyl diphosphate synthase (FPS; EC 2.5.1.1, 2.5.1.10) catalyzes biosynthesis of farnesyl diphosphate, which is important to insects as the precursor of juvenile hormone and the substrate for (E)-β-farnesene synthase. Here, two FPS cDNAs were isolated from the green peach aphid, Myzus persicae (EU334430 and EU334431). Their shared identity within the coding region is ~82%. The deduced amino acid sequences of the two M. persicae FPS cDNAs have the highly conserved motifs characteristic of most known FPSs. Phylogenetic analyses showed that they are closely related to other insect FPSs. Homology modeling of structures suggested a very good fit between the three-dimensional structures of the two putative M. persicae FPSs (designated as MpFPS1 and MpFPS2) and the avian FPS crystal structure. The corresponding genomic DNA sequences were subsequently determined (EU429295 and EU429296). Sequence comparisons revealed a different splicing pattern between the two MpFPS genes. Furthermore, the two MpFPS genes exhibited a seemingly very primitive gene-splicing pattern at 5′ ends but a gene-splicing style similar to mammalian FPS genes at 3′ ends. These data, combined with results of Southern blotting, suggest that M. persicae contains two different FPS genes. This is the first report that two different FPS genes exist in a hemipteran insect.


2011 ◽  
Vol 100 (3) ◽  
pp. 218a-219a
Author(s):  
Srinivas Aripirala ◽  
Sandra Gabelli ◽  
Eric Oldfield ◽  
Dolores Gonzalez Pacanowska ◽  
Mario Amzel

2013 ◽  
Vol 81 (6) ◽  
pp. 742-748 ◽  
Author(s):  
Steffen Lindert ◽  
Wei Zhu ◽  
Yi‐Liang Liu ◽  
Ran Pang ◽  
Eric Oldfield ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document