geranylgeranyl diphosphate synthase
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 27)

H-INDEX

29
(FIVE YEARS 3)

2021 ◽  
pp. 116307
Author(s):  
Alisa E. R. Fairweather ◽  
Daniel B. Goetz ◽  
Chloe M. Schroeder ◽  
Nazmul H. Bhuiyan ◽  
Michelle L. Varney ◽  
...  

Author(s):  
Jiajia Jin ◽  
Hong Qian ◽  
Bing Wan ◽  
Li Zhou ◽  
Cen Chen ◽  
...  

Macrophage activation is a key contributing factor for excessive inflammatory responses of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Geranylgeranyl diphosphate synthase (GGPPS) plays a key role in the development of inflammatory diseases. Our group previously showed that GGPPS in alveolar epithelium have deleterious effects on acute lung injury induced by LPS or mechanical ventilation. Herein, we examined the role of GGPPS in modulating macrophage activation in ALI/ARDS. We found significant increased GGPPS expression in alveolar macrophages in ARDS patients compared to healthy volunteers and in ALI mice induced by LPS. GGPPS-floxed control (GGPPSfl/fl) and myeloid-selective knockout (GGPPSfl/flLysMcre) mice were then generated. Interestingly, using a LPS-induced ALI mouse model, we showed that myeloid-specific GGPPS knockout significantly increased mortality, aggravated lung injury, and increased the accumulation of inflammatory cells, total protein, and inflammatory cytokines in BALF. In vitro, GGPPS deficiency up-regulated the production of LPS-induced IL-6, IL-1β, and TNF-α in alveolar macrophages, bone marrow-derived macrophages (BMDMs), and THP-1 cells. Mechanistically, GGPPS knockout increased phosphorylation and nuclear translocation of NF-κB p65 induced by LPS. In addition, GGPPS deficiency increased the level of GTP-Rac1, which was responsible for NF-κB activation. In conclusion, decreased expression of GGPPS in macrophages aggravates lung injury and inflammation in ARDS, at least partly by regulating Rac1-dependent NF-κB signaling. GGPPS in macrophages may represent a novel therapeutic target in ARDS.


2021 ◽  
Author(s):  
M. Victoria Barja ◽  
Miguel Ezquerro ◽  
Stefano Beretta ◽  
Gianfranco Diretto ◽  
Igor Florez‐Sarasa ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tao Cheng ◽  
Guang Zhao ◽  
Mo Xian ◽  
Congxia Xie

Abstract cis-Abienol, a natural diterpene-diol isolated from balsam fir (Abies balsamea), can be employed as precursors for the semi-synthesis of amber compounds, which are sustainable replacement for ambergris and widely used in the fragmented industry. This study combinatorially co-expressed geranyl diphosphate synthase, geranylgeranyl diphosphate synthase, Labda-13-en-8-ol diphosphate synthase and diterpene synthase, with the best combination achieving ~ 0.3 mg/L of cis-abienol. An additional enhancement of cis-abienol production (up to 8.6 mg/L) was achieved by introducing an exogenous mevalonate pathway which was divided into the upper pathway containing acetyl-CoA acetyltransferase/HMG-CoA reductase and HMG-CoA synthase and the lower pathway containing mevalonate kinase, phosphomevalonate kinase, pyrophosphate mevalonate decarboxylase and isopentenyl pyrophosphate isomerase. The genetically modified strain carrying chromosomal copy of low genes of the mevalonate with the trc promoter accumulated cis-abienol up to 9.2 mg/L in shake flask. Finally, cis-abienol titers of ~ 220 mg/L could be achieved directly from glucose using this de novo cis-abienol-producing E. coli in high-cell-density fermentation. This study demonstrates a microbial process to apply the E. coli cell factory in the biosynthesis of cis-abienol.


2020 ◽  
Vol 295 (47) ◽  
pp. 15988-16001
Author(s):  
Lisha Wei ◽  
Yan-Yan Zheng ◽  
Jie Sun ◽  
Pei Wang ◽  
Tao Tao ◽  
...  

Metaflammation is a primary inflammatory complication of metabolic disorders characterized by altered production of many inflammatory cytokines, adipokines, and lipid mediators. Whereas multiple inflammation networks have been identified, the mechanisms by which metaflammation is initiated have long been controversial. As the mevalonate pathway (MVA) produces abundant bioactive isoprenoids and abnormal MVA has a phenotypic association with inflammation/immunity, we speculate that isoprenoids from the MVA may provide a causal link between metaflammation and metabolic disorders. Using a line with the MVA isoprenoid producer geranylgeranyl diphosphate synthase (GGPPS) deleted, we find that geranylgeranyl pyrophosphate (GGPP) depletion causes an apparent metaflammation as evidenced by abnormal accumulation of fatty acids, eicosanoid intermediates, and proinflammatory cytokines. We also find that GGPP prenylate cytochrome b5 reductase 3 (CYB5R3) and the prenylated CYB5R3 then translocate from the mitochondrial to the endoplasmic reticulum (ER) pool. As CYB5R3 is a critical NADH-dependent reductase necessary for eicosanoid metabolism in ER, we thus suggest that GGPP-mediated CYB5R3 prenylation is necessary for metabolism. In addition, we observe that pharmacological inhibition of the MVA pathway by simvastatin is sufficient to inhibit CYB5R3 translocation and induces smooth muscle death. Therefore, we conclude that the dysregulation of MVA intermediates is an essential mechanism for metaflammation initiation, in which the imbalanced production of eicosanoid intermediates in the ER serve as an important pathogenic factor. Moreover, the interplay of MVA and eicosanoid metabolism as we reported here illustrates a model for the coordinating regulation among metabolite pathways.


2020 ◽  
Vol 28 (16) ◽  
pp. 115604
Author(s):  
Daniel B. Goetz ◽  
Michelle L. Varney ◽  
David F. Wiemer ◽  
Sarah A. Holstein

Sign in / Sign up

Export Citation Format

Share Document