Combined effects of mulching and crop density on soil evaporation, temperature, and water use efficiency of winter wheat

2021 ◽  
pp. 1-12
Author(s):  
Dingpu Cheng ◽  
Zhiqiang Wang ◽  
Lingna Yang ◽  
Lidan Zhang ◽  
Qingtao Zhang

Abstract Reducing soil evaporation by different agricultural practices is important not only for water saving but also for its applicability by farmers. In wheat fields, the goal of efficient water management is to save water and increase yield. At present, the combined effects of maize-straw mulching (M) and crop density (D) on soil evaporation and temperature, wheat performance, and water use efficiency (WUE) are not clear. A field experiment was conducted for winter wheat (Triticum aestivum L.) in the North China Plain (NCP). The two levels of crop density included high (HD) and normal density (ND), and the three levels of mulch included high (HM), low (LM), and no mulch (NM). The results indicated that both straw mulching and high crop density had significant inhibitory effects on soil evaporation. Normal crop density with high mulch gave the lowest yield among all treatments because high mulching reduced the soil temperature and hindered the soil temperature increase in early spring. Compared with normal crop density with no mulch, the yield and WUE of winter wheat for high crop density with low mulch (HDLM) were enhanced by 20.6% and 21.9%, respectively. Compared with other treatments, HDLM gave the higher WUE due to the higher soil temperature, leaf area index, and biomass. Therefore, HDLM was an effective way to maximize the WUE of winter wheat in the NCP.

2008 ◽  
Vol 11 (2) ◽  
pp. 161-170 ◽  
Author(s):  
Quanqi Li ◽  
Yuhai Chen ◽  
Liu Mengyu ◽  
Xunbo Zhou ◽  
Songlie Yu ◽  
...  

2018 ◽  
Vol 206 ◽  
pp. 95-101 ◽  
Author(s):  
Jun Wang ◽  
Rajan Ghimire ◽  
Xin Fu ◽  
Upendra M. Sainju ◽  
Wenzhao Liu

2021 ◽  
Vol 39 (3) ◽  
pp. 330-334
Author(s):  
Agnaldo Roberto de J Freitas ◽  
Francisco Claudio L de Freitas ◽  
Caetano Marciano de Souza ◽  
Fabio T Delazari ◽  
Paulo Geraldo Berger ◽  
...  

ABSTRACT Vegetable cultivation requires high water use and weed control. Soil cover using recycled paper, can be an alternative to polyethylene film to reduce weed incidence, soil temperature and increase water use efficiency beyond reduces costs and environmental pollutions. The objective of this study was to evaluate the use of biodegradable mulch in weed management and water use efficiency (WUE) in lettuce crop. The treatments were composed of brown recycled paper (RP), black polyethylene film (PF) and soil without cover with weed removal (WR) and without weed removal (WW). RP and PF were efficient to control weeds. The soil temperature with RP was 8.2 and 2.1ºC lower than with PF and WR, respectively. The lettuce yield with RP was 14.5 and 28.3% higher than WR, and with PF, respectively. The water volume applied with RP was 26.5% lower, and WUE was 55.6% higher compared to WR. Soil cover with recycled paper controlled weeds, reduced soil temperature and water consumption and increased yield and water use efficiency in lettuce crop.


Plant Disease ◽  
2010 ◽  
Vol 94 (6) ◽  
pp. 766-770 ◽  
Author(s):  
J. A. Price ◽  
F. Workneh ◽  
S. R. Evett ◽  
D. C. Jones ◽  
J. Arthur ◽  
...  

Greenhouse and field studies were conducted to determine the effects of Wheat streak mosaic virus (WSMV), a member of the family Potyviridae, on root development and water-use efficiency (WUE) of two hard red winter wheat (Triticum aestivum) cultivars, one susceptible and one resistant to WSMV. In the greenhouse studies, wheat cultivars were grown under three water regimes of 30, 60, and 80% soil saturation capacity. After inoculation with WSMV, plants were grown for approximately 4 weeks and then harvested. Root and shoot weights were measured to determine the effect of the disease on biomass. In all water treatments, root biomass and WUE of inoculated susceptible plants were significantly less (P < 0.05) than those of the noninoculated control plants. However, in the resistant cultivar, significance was only found in the 30 and 60% treatments for root weight and WUE, respectively. Field studies were also conducted under three water regimes based on reference evapotranspiration rates. Significant reductions in forage, grain yield, and crop WUE were observed in the inoculated susceptible plots compared with the noninoculated plots. Both studies demonstrated that wheat streak mosaic reduces WUE, which is a major concern in the Texas Panhandle because of limited availability of water.


Sign in / Sign up

Export Citation Format

Share Document