scholarly journals Developmental genetics of leaf formation in Lolium 3. Inheritance of a developmental complex

1970 ◽  
Vol 16 (1) ◽  
pp. 17-28 ◽  
Author(s):  
K. J. R. Edwards

SUMMARYUsing four lines derived from a single base population of Lolium perenne by selection for large leaf size (LL), small leaf size (SL), fast rate of leaf appearance (FR), and slow rate of leaf appearance (SR), the inheritance of a number of related characters specifying various aspects of leaf development was studied. F1 and F2 generations were produced for all possible crosses between these four lines.The genetic differences between the selection lines were largely additive for all characters studied and entirely so for rate of leaf appearance, duration of elongation of a single leaf and for the time interval between the maturation of leaf 3 and the unfolding of the next youngest leaf on the same side of the apex, leaf 5. The non-additive variances noted in rate of total leaf area formation, individual leaf size and its components length and width, and in the rate of leaf elongation, were associated with a tendency towards heterosis in these characters. This was quite marked in some crosses and tended to be larger for the more complex characters, rate of total leaf area formation and leaf size, suggesting that the heterosis was, to a considerable extent, due to interactions between genes controlling component characters.The data confirmed the earlier finding that the negative correlated selection response between leaf size and rate of leaf appearance was due to a basic association between the maturation of a leaf and the unfolding (onset of rapid elongation) of the next youngest leaf on the same side of the apex. Thus an increase in rate of leaf appearance reduces the duration of elongation of a leaf and this in turn will reduce leaf length. However, the basic association, which seems to be controlled by vascular development of the young leaf, is not entirely invariate.

1967 ◽  
Vol 9 (2) ◽  
pp. 233-245 ◽  
Author(s):  
K. J. R. Edwards

1. Repeated measurements on the growth of individual leaves in seedlings and young plants of ryegrass combined with dissections of the apex of the shoot and of very young leaves have shown that the basic pattern of leaf formation is very similar in Lolium multiflorum and L. perenne.2. The initial growth rate of a leaf primordium is low but increases suddenly at a point when the primordium is somewhat longer than the apex and about 1 mm. in length. After this transition, which I have called the unfolding of the leaf, the rate of elongation is faster and more or less linear until the leaf is nearly mature.3. The time of unfolding of a leaf is very closely associated with the time of maturity of the next older leaf on the same side of the apex. Thus a leaf ceases growth when the next younger leaf immediately above it starts elongating rapidly, though which is cause and which is effect is it not possible to say.4. This close relationship between duration of leaf elongation and rate of unfolding of successive leaves holds for both species in two seasons. It leads one to predict that selection for increased leaf size, in so far as it is a result of greater duration of leaf elongation, is likely to be accompanied by a slower rate of leaf appearance, and conversely that selection for rate of leaf appearance is likely to result in smaller leaves.


1995 ◽  
Vol 43 (2) ◽  
pp. 247-260
Author(s):  
H. Biemond

In a series of greenhouse and field trials, spinach cv. Trias plants were supplied with different amounts of N fertilizer in various split applications. Rates of leaf emergence and expansion were recorded, as well as final leaf size. The rate of leaf appearance varied between 0.16 and 0.57/day across experiments, but was hardly affected by N treatment. The rate of leaf expansion and mature leaf area increased with leaf number, reaching maximum values at leaf pair 3+4 or 5+6 and decreasing subsequently. Both characteristics were positively correlated with N supply. The duration of expansion was not influenced by N treatments and varied between 15 and 30 days in most experiments. The rate of leaf expansion was the main factor determining mature leaf size. Specific leaf area over all green leaves slowly decreased with time in most experiments and was around 300 cmsuperscript 2/g. As the differences in the number of leaves were small, the differences in total green leaf area per plant resulted from differences in the areas of individual mature leaves.


2018 ◽  
Vol 40 (6) ◽  
Author(s):  
Marlúcia Pereira dos Santos ◽  
Victor Martins Maia ◽  
Fernanda Soares Oliveira ◽  
Rodinei Facco Pegoraro ◽  
Silvânio Rodrigues dos Santos ◽  
...  

Abstract The estimation of pineapple total leaf area by simple, fast and non-destructive methods allow inferences related to carbon fixation estimative, biotic and abiotic damages and correlating positively with yield. The objective was to estimate D leaf area and total leaf area and of ‘Pérola’ pineapple plants from biometric measurements. For this purpose, 125 slips were selected and standardized by weight for planting in pots. Nine months after planting in a greenhouse, the plants were harvested to evaluate the total leaf area of the plant, D leaf area and D leaf length and width using a portable leaf area meter. Pearson correlation analysis was made and it was observed significative positive and strong correlation among the studied variables. Then, regression models were adjusted. It was observed that the D leaf area of ‘Pérola’ pineapple can be estimated from the length and width of this same leaf and the total leaf area can be estimated from the D leaf area.


2012 ◽  
Vol 28 (2) ◽  
pp. 161-169 ◽  
Author(s):  
David C. Hartnett ◽  
Jacqueline P. Ott ◽  
Kathryn Sebes ◽  
Marks K. Ditlhogo

Abstract:Responses of plants to herbivory are dependent on the type of damage and the ontogenetic stage of the plant. We compared the effects of stem pruning and defoliation on seedlings of Colophospermum mopane, an ecologically important tree species widely distributed in southern Africa. The growth of 160 greenhouse-grown juveniles were measured for 6-mo after germination and then 6-mo after treatments including 50% defoliation, 100% defoliation, 50% stem pruning and controls. Pruning resulted in 30% reductions in total leaf area, height and biomass. Partial defoliation resulted in 30% reductions in total leaf area and plant biomass. However, complete defoliation resulted in a 30% increase in biomass production, a doubling in leaf and lateral branch number, a 45% reduction in leaf size, and no change in total leaf area. Thus, completely defoliated seedlings showed greater performance than those that were only partially defoliated, indicating that C. mopane has become adapted to the chronic and severe defoliation inflicted by Imbrasia belina caterpillars. Comparison of our results with other studies indicates that C. mopane seedlings are less herbivory-tolerant than adults and that pruning has more negative effects than defoliation. Thus, seedling browsers may constrain recruitment in C. mopane, influencing its population dynamics and abundance.


1967 ◽  
Vol 9 (2) ◽  
pp. 247-257 ◽  
Author(s):  
K. J. R. Edwards

Detailed measurements of leaf growth and leaf dimensions in the seedling stage were made on lines which had been selected either for large or small leaf size or for fast or slow rates of leaf appearance within one population of Lolium multiflorum (Italian ryegrass) and two populations of L. perenne (Irish perennial and Hunsballe perennial ryegrass).Selection for either character had no effect on the rate of initiation of primordia at the apex, but did change the rate at which successive primordia became leaves. This rate of unfolding was very highly correlated with the rate of visible appearance of leaves and in all cases showed a parallel response to selection for the latter, as did also the rate of maturation of leaves. All three rates showed a negative correlated response to selection for leaf size.Selection for increased leaf size in all cases led to a longer duration of the elongation of an individual leaf, but selection for faster rate of leaf appearance always reduced this duration. The rate of elongation of individual leaves increased under selection for larger leaf size but showed irregular changes under selection for faster leaf appearance, going down in Irish but up in Hunsballe.Data for dimensions of cells from the lower epidermis showed that changes in leaf length under selection were sometimes associated with changes in cell length, some-times in cell number and sometimes with both.Selection had in no case disrupted the close association between the maturation and cessation of growth of a leaf on the one hand, and, on the other, the unfolding from the apex and onset of rapid growth of the next younger leaf on the same side of the apex. Thus in all lines only two leaves (one on each side of the apex) were elongating rapidly at any one time, and an increase in the rate of unfolding was associated with a decrease in the duration of elongation and vice versa.This association was the basis of the observed negative correlated responses between leaf size and rate of leaf appearance. But the fact that the rate of elongation could change independently of the duration opened up the possibility of setting up a selection criterion which would increase the total rate of leaf area formation.The value of this kind of analysis of a character complex in a plant-breeding programme is suggested to lie in discovering physiologically or developmentally limiting processes rather than merely identifying morphological components.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 764C-764
Author(s):  
Yin-Tung Wang

Seedling Phalaenopsis (P. Taisuco Eagle × P. Taisuco Rose) plants with an 8- to 10-cm leaf span were grown in 10-cm pots filled with a medium consisting of 70% fine fir bark and 30% peatmoss (by volume). Plants were given (in N–P2O5–K2O) 10–30–20, 15–10–30, 15–20–25, 20–5–19, 20–10–20, or 20–20–20 fertilizers at the 100 or 200 mg N/liter rate. Pots were leached with water following every two fertigations. After 7 months, leaf span, leaf size, total leaf area, and fresh weight were not affected by fertilizer type. The differences in leaf numbers were small. The higher rate of fertilizer resulted in plants with wider leaf span (32.8 vs. 28.5 cm), more (5.5 vs. 4.8), larger (103 vs. 89 cm2) leaves, and greater total leaf area (355 vs. 275 cm2) than did the lower rate. In another experiment, similar plants with a leaf span of 15 to 18 cm were grown in 10-cm pots with 100% fine fir bark or a mixture of 80% fine fir bark and 20% peatmoss. They were fertigated with water having an EC - 0.05, 0.40, 0.75, 1.10, or 1.40 dS·m–1 containing 1 g·liter–1 20–20–20 fertilizer three times and then drenched with their respective water containing 0.6 g·liter–1 Ca NO3)2·4H2O. After 11 months, water salinity did not affect the date of spiking. Plants receiving water with EC = 1.10 dS·m–1 had more leaves and spikes than other treatments. Plants in the bark/peatmoss mix began spiking earlier, had more leaves (6.7 vs. 5.7), and more inflorescences (1.9 vs. 1.5) than those in 100% bark. There was no salinity x medium interaction in all the parameters recorded.


1992 ◽  
Vol 6 (1) ◽  
pp. 68-76 ◽  
Author(s):  
David T. Patterson

Velvetleaf from Mississippi and Wisconsin and soybean (var. Williams) were grown in five temperature regimes (12/4, 19/11, 26/18, 33/25, and 40/32 C day/night) in controlled-environment chambers. Leaf appearance rates increased with temperature in both species, ranging from 0.06 to 0.69 leaves per day in velvetleaf and 0.07 to 0.38 leaves per day in soybean. The threshold temperature for leaf appearance in both species was 5 to 6 C. The largest leaves of both species were produced at 26/18 C. By 55 d after emergence, the greatest total leaf area per plant occurred at 26/18 C or above in both species. Reproductive development occurred earliest at 33/25 C in velvetleaf and at 26/18 C in soybean. This limited vegetative growth in velvetleaf more than in soybean. The weed/crop ratio for total leaf area increased with increasing temperature, indicating that velvetleaf probably would be more competitive with soybean under higher temperatures. The two populations of velvetleaf generally responded similarly to temperatures.


1998 ◽  
Vol 28 (11) ◽  
pp. 1660-1670 ◽  
Author(s):  
Karen Kuers ◽  
Klaus Steinbeck

Total leaf production, vertical foliage profiles, and the timing of leaf production and loss were compared in fertilized and unfertilized 3-year-old sweetgum (Liquidambar styraciflua L.) saplings. Nitrogen (N) fertilization increased total leaf area and mass through increased leaf size rather than changes in leaf number or specific leaf mass. Both the vertical and temporal distribution of foliage shifted in response to N. Fertilization increased leaf area primarily in the mid- to upper crown. The midheight of the tree crowns shifted upward throughout the season as leaf abscission occurred from the base to the top of the tree and acropetally along the branches. Peak leaf display occurred in July regardless of N supply. However, fertilized trees had twice the leaf area of the unfertilized trees by early autumn. Leaf area production and loss were modeled separately as a function of fertilization and crown height and the equations combined to model temporal changes in leaf area display.


1996 ◽  
Vol 74 (4) ◽  
pp. 589-598 ◽  
Author(s):  
J. H. C. Cornelissen

Interactive effects of season and light environment on tree seedling growth were studied in four evergreen species in the humid subtropics of China. These species were the needle-leaved pioneer Pinus massoniana and the broad-leaved shade-tolerant Castanopsis fargesii, Sloanea leptocarpa, and Elaeocarpus japonicus. The experimental outdoor light environments, which broadly simulated those in forest gaps and clearings, were 100, 55, 33, and 18% of incident light quantity. Mean relative growth rates for both total leaf area and s tem height revealed interaction of season and light environment in Pinus, Castanopsis, and Elaeocarpus. In these species, mean relative growth rates were higher in summer in more shaded environments and in autumn in more exposed environments, but this shift was not as clear in Castanopsis. Winter growth was virtually nil in all species, although Pinus still achieved some winter stem height change. The hypothesis that late-successional rather than early-successional species would demonstrate interactions of season and light environment on growth and development was not sufficiently supported by the data. Variation in mean relative growth rates for total leaf area was due to changes in whole-plant average leaf size as well as leaf numbers. In Sloanea and Elaeocarpus seedlings in high light environments, reduced leaf size and enhanced leaf abscission rates gave rise to negative mean relative growth rates for total leaf area. The more sun-tolerant Castanopsis seedlings revealed no such leaf size response and shed few, if any, leaves in any of the light environments. These results indicate that seasonal variability in the growth response of tree seedlings to the light environment is an important factor to be taken into account in studies on gap dynamics of subtropical forests. Keywords: China, leaf area, leaf turnover, leaf size, mean relative growth rate, shade, subtropical, sun.


2012 ◽  
Vol 5 (1) ◽  
pp. 309-318 ◽  
Author(s):  
MI Kabir ◽  
MG Mortuza ◽  
MO Islam

The experiment was conducted to see the effect of nutrient spray on morphophysiological feature and growth of three orchid varieties namely Dendrobium Red Bull, D. Kasim Gold and D White 5 N. Results revealed that the morphophysiological and growth attributes significantly varied among the cultivars. D Red Bull showed the highest plant height, leaf length, leaf area and stem diameter among the varieties. D. White 5 N was superior in leaf number and total leaf area and D. Kasim Gold was superior in leaf area index and leaf width to the other varieties. On the other hand, the trend of increasing in leaf length, leaf width, leaf area index, leaf number, leaf area and total leaf area was the highest for N:P:K as 10:25:30. Plant height and stem diameter was maximum for N:P:K as 15:20:20. In conclusion, low level of nitrogen and high level of phosphorus and potassium was suitable for leaf length, leaf width, leaf area index, leaf number, leaf area and total leaf area while high level of nitrogen and low level of potassium was suitable for plant height and stem diameter. DOI: http://dx.doi.org/10.3329/jesnr.v5i1.11598 J. Environ. Sci. & Natural Resources, 5(1): 309-318, 2012


Sign in / Sign up

Export Citation Format

Share Document