leaf elongation
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 18)

H-INDEX

32
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Tomohiro Jishi ◽  
Ryo Matsuda ◽  
Kazuhiro Fujiwara

The morphology of plants growing under combined blue- and red-light irradiation is affected by the presence or absence of time slots of blue- and red-light mono-irradiation. The purposes of this study were to investigate the morphology and growth of cos lettuce grown under light irradiation combining several durations of blue and red light simultaneously and independent mono-irradiations of blue and red light during the day, and to clarify the effects of the durations of blue-light mono-irradiation and blue-light irradiation. Young cos lettuce seedlings were grown under 24-h blue-light irradiation with a photosynthetic photon flux density (PPFD) of 110μmol m−2 s−1 (B+0R) or under 24-h blue-light irradiation with a PPFD of 100μmol m−2 s−1 supplemented with 8 (B+8R), 16 (B+16R), and 24-h (B+24R) red-light irradiation with PPFDs of 30, 15, and 10μmol m−2 s−1, respectively (Experiment 1). The daily light integral was 9.50mol m−2 in all treatments. In Experiment 1, leaf elongation was promoted as the duration of red-light irradiation decreased and the duration of blue-light mono-irradiation increased. The maximum shoot dry weight was observed under the B+8R treatment. Growth was likely promoted by the expansion of the light-receptive area caused by moderate leaf elongation without tilting. In Experiment 2, young cos lettuce seedlings were grown as for Experiment 1, but blue- and red-light irradiation intensities were reversed (R+0B, R+8B, R+16B, and R+24B). Leaf elongation was promoted by the absence of blue-light irradiation (R+0B). The leaf surface was increasingly flattened, and the shoot dry weight was enhanced, as the duration of blue-light irradiation increased. Thus, cos lettuce leaf morphology may be manipulated by adjusting each duration of blue-light mono-irradiation, red-light mono-irradiation, and blue- and red-light simultaneous irradiation, which can, in turn, promote cos lettuce growth.


HortScience ◽  
2021 ◽  
pp. 1-6
Author(s):  
Tomohiro Jishi ◽  
Ryo Matsuda ◽  
Kazuhiro Fujiwara

Cos lettuce was grown under different spectral photon flux density distribution (SPFD) change patterns with blue- and/or red light-emitting diode (LED) irradiation with a 24-hour cycle. Twelve treatments were designed with a combination of four relative SPFD (RSPFD) change patterns and three photosynthetic photon flux density (PPFD) levels. The RSPFD change patterns were as follows: BR/BR, simultaneous blue- and red-light irradiation (BR) for 24 h; R/BR, red-light monochromatic irradiation (R) for 12 h followed by 12 hours of BR; B/BR, blue-light monochromatic irradiation (B) for 12 hours followed by 12 hours of BR; and B/R, 12 hours of B followed by 12 hours of R. Each RSPFD change pattern was conducted at three daily average photosynthetic photon flux densities (PPFDave) of 50, 100, and 200 µmol·m−2·s−1. The RSPFD change patterns that included B (B/BR and B/R) resulted in elongated leaves. A low ratio of active phytochrome to total phytochrome under B was considered the reason for leaf elongation. Shoot dry weight was significantly greater under the RSPFD change patterns that included B when the PPFDave was 200 µmol·m−2·s−1. The leaf elongation caused by B would have increased the amount of light received and thereby promoted growth. However, excessive leaf elongation caused the plants to fall, and growth was not promoted under the RSPFD change patterns that included B when the PPFDave was 50 µmol·m−2·s−1. Thus, 12-hour B promoted growth under conditions in which leaf elongation leads to increases in the amount of light received.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 134
Author(s):  
Sabine Stuerz ◽  
Folkard Asch

Predictions of future crop growth and yield under a changing climate require a precise knowledge of plant responses to their environment. Since leaf growth increases the photosynthesizing area of the plant, it occupies a central position during the vegetative phase. Rice is cultivated in diverse ecological zones largely differing in temperature and relative air humidity (RH). To investigate the effects of temperature and RH during day and night on leaf growth, one variety (IR64) was grown in a growth chamber using 9 day/night regimes around the same mean temperature and RH, which were combinations of 3 temperature treatments (30/20 °C, 25/25 °C, 20/30 °C day/night temperature) and 3 RH treatments (40/90%, 65/65%, 90/40% day/night RH). Day/night leaf elongation rates (LER) were measured and compared to leaf gas exchange measurements and leaf area expansion on the plant level. While daytime LER was mainly temperature-dependent, nighttime LER was equally affected by temperature and RH and closely correlated with leaf area expansion at the plant level. We hypothesize that the same parameters increasing LER during the night also enhance leaf area expansion via shifts in partitioning to larger and thinner leaves. Further, base temperatures estimated from LERs varied with RH, emphasizing the need to take RH into consideration when modeling crop growth in response to temperature.


2020 ◽  
Author(s):  
Jonas R. Coussement ◽  
Selwyn L. Y. Villers ◽  
Hilde Nelissen ◽  
Dirk Inzé ◽  
Kathy Steppe

2020 ◽  
Vol 63 (6) ◽  
pp. 493-507
Author(s):  
Zoi Mylona ◽  
Emmanuel Panteris ◽  
Theodoros Kevrekidis ◽  
Paraskevi Malea

AbstractThe extensive application of titanium dioxide nanoparticles (TiO2 NPs) has raised concern about its environmental risks. The present study aims to elucidate TiO2 NP ecotoxicity, by assessing effects on seagrasses at environmentally relevant concentrations. Changes in physiological and structural cell traits of Cymodocea nodosa leaves, treated with TiO2 NPs at 0.0015–1.5 mg l−1 for eight consecutive days, were investigated. Intracellular levels of hydrogen peroxide (H2O2) increased significantly, even early during the lowest exposure, despite an up-regulation of H2O2-scavenging enzyme activity. Actin filaments (AFs) and endoplasmic reticulum (ER) were affected in a concentration- and time-dependent pattern, while no changes in microtubule organization and cell ultrastructure were detected. The lowest effect concentrations for AF and ER impairment were 0.15 and 1.5 mg l−1, respectively; for cell death, these were 0.15–1.5 mg l−1, depending on leaf age, and for leaf elongation inhibition 0.15 mg l−1. Thus, elevated H2O2 level can be considered as an early warning biomarker for TiO2 NPs, while leaf elongation, AF and ER impairment are also reliable indicators. A risk quotient greater than 1 was estimated; thus, TiO2 NPs might present a significant potential environmental risk. Our findings can be utilized for monitoring pollution levels in coastal environments.


Author(s):  
Romain Barillot ◽  
Tom De Swaef ◽  
Didier Combes ◽  
Jean-Louis Durand ◽  
Abraham J Escobar-Gutiérrez ◽  
...  

Abstract Reduced blue light irradiance is known to enhance leaf elongation rate (LER) in grasses but the mechanisms involved have not yet been elucidated. We investigated if leaf elongation response to reduced blue light could be mediated by stomatal induced variations of plant transpiration. Two experiments were carried out on tall fescue in order to monitor LER and transpiration under reduced blue light irradiance. Additionally, LER dynamics were compared to those observed in the response to VPD-induced variations of transpiration. Finally, we developed a model of water flow within a tiller to simulate the observed short-time response of LER to various transpiration regimes. LER dramatically increased in response to blue light reduction and then reached new steady states, which remained higher than the control. Reduced blue light triggered a simultaneous stomatal closure which induced an immediate decrease of leaf transpiration. The hydraulic model of leaf elongation accurately predicted the LER response to blue light and VPD, resulting from an increase in the growth-induced water potential gradient in the leaf growth zone. Our results suggest that the blue light signal is sensed by stomata of expanded leaves and transduced to the leaf growth zone through the hydraulic architecture of the tiller.


Author(s):  
Juliana R. L. Lima ◽  
Rosane C. Rodrigues ◽  
Giovanne O. C. Sousa ◽  
Clésio dos S. Costa ◽  
Henrique N. Parente ◽  
...  

ABSTRACT The objective of this study was to evaluate the morphogenic and structural characteristics, and demographic patterns of Andropogon gayanus subjected to different cutting frequencies and intensities. A completely randomized design was adopted in a 3 × 2 factorial arrangement, corresponding to three cutting heights (50, 70, and 90 cm), and two cutting intensities (50 and 70%) with four repetitions, totaling 24 plots of 7.50 × 6.25 m. For morphogenesis, there was no interaction effect (P ≤ 0.05) of treatments on stem elongation rate, leaf appearance rate, and phyllochron rate. The highest rate of leaf elongation was observed at a height of 90 cm and cut intensity of 50%, with 1.69 and 0.84 cm tiller-1 d-1 of leaf elongation at heights of 50 and 70 cm, respectively. For forage production, there was no interaction (p > 0.05) between cutting intensity and cutting height. When the pasture was managed to a cutting height of 90 cm, there was a greater increase in dry leaf mass, stalk dry mass, dead forage dry mass, and total dry forage mass, which was 50.89% and 53.29% higher than pasture heights of 50 and 70 cm, respectively. There was no interaction between factors on demographic characteristics (p > 0.05). A cutting height of 70 cm with a cutting intensity of 50% is recommended when handling this grass.


2020 ◽  
Vol 36 (5) ◽  
Author(s):  
Sâmara Stainy Cardoso Sanchês ◽  
Rosane Cláudia Rodrigues ◽  
Ricardo Alves De Araújo ◽  
Clésio dos Santos Costa ◽  
Ivone Rodrigues Da Silva ◽  
...  

T This study aimed to evaluate the morphogenetic, structural, and productive characteristics of Andropogon gayanus cv. ‘Planaltina’ subjected to different nitrogen fertilization levels and defoliation intensities. The experiment was done in a completely randomized design with a factorial arrangement of six nitrogen doses (0, 100, 200, 300, 400, and 500 kg N ha-1) and two defoliation intensities (15 and 30 cm). The production and structure data were grouped into rainy and dry periods, while morphogenesis data were compared only among different fertilization and defoliation intensities. The total dry forage biomass (TDFB), dry mass of leaves (DML), dry mass of stems (DMS), and dead forage dry mass (DFDM) were then determined. In addition to these variables, the morphogenetic characteristics of the plants and the numbers of tillers alive and dead were evaluated. There was no interaction (P>0.05) between the effects of nitrogen fertilization doses and the intensity of defoliation on TDFB, DML, DMS, and DFDM in both of the evaluated phases (rainy and dry). It was also observed that the rates of leaf elongation, leaf appearance, and leaf blade elongation increased with nitrogen fertilization. On the other hand, the culm elongation rate and phyllochron decreased as the dose applied increased. The defoliation intensity did not influence (P>0.05) the morphogenetic characteristics examined, nor did it affect the senescence rate of nitrogen in leaves and number of live leaves per tiller. The number of dead tillers increased linearly during the rainy period. Based on these results, to improve the efficiency of production of gamba grass it is recommended that it be managed with a defoliation intensity of 30 cm and nitrogen fertilization of 286.52 kg N ha-1 year-1.


Sign in / Sign up

Export Citation Format

Share Document