Introduction to the Welsh Basin thematic issue

1992 ◽  
Vol 129 (5) ◽  
pp. 513-514
Author(s):  
N. H. Woodcock ◽  
C. J. N. Fletcher

The Welsh Basin was an area of enhanced Early Palaeozoic subsidence on the northwestern margin of the Eastern Avalonian microcontinent. It is bordered to the southeast by the Midland Platform and to the northwest by the smaller Irish Sea Platform (Fig. 1). The sedimentary rocks of the basin and its flanking platforms range from Lower Cambrian through Lower Devonian. The sequence is dominantly marine, with abundant volcanics in the Ordovician. A basinwide change to non-marine facies is preserved in the Lower Devonian, heralding basin inversion and the culminating Acadian (late Caledonian) Orogeny.

Author(s):  
John Parnell ◽  
Mas'ud Baba ◽  
Stephen Bowden

ABSTRACTBitumen veins were formerly mined as ‘coal’ from Moinian metamorphic basement at Castle Leod, Strathpeffer, Ross-shire. The abundance and spatial concentration of hydrocarbons implies generation of a large volume of oil that exerted a fluid pressure great enough to open veins to 1+ m width. Biomarker characteristics, including β-carotane and a high proportion of C28 steranes, correlate the bitumen to Lower Devonian non-marine shales separated from the Moinian basement by a major fault. Bitumen in the Moinian basement has higher diasterane/sterane ratios than bitumen in the Devonian sequence, indicating greater levels of biodegradation, which may reflect more interaction with water in the basement. Replacive bitumen nodules in the Moinian basement, containing thoriferous/uraniferous mineral phases, are comparable with bitumen nodules in basement terrains elsewhere. Formation of the nodules represents hydrocarbon penetration of low-permeability basement, consistent with high fluid pressure. Bitumen veins are particularly orientated E–W, and may be associated with E–W transfer faults attributed to Permo-Carboniferous basin inversion.


Author(s):  
John Parnell ◽  
Ian Swainbank

ABSTRACTThe lead isotope compositions of 61 galenas from central and southern Scotland vary markedly between different regions. Most galenas from the southern Grampian Highlands yield isotope ratios (206Pb/204Pb 17·77 ± 0·25, 207Pb/204Pb 15·47 ± 0·05, 208Pb/204Pb 37·63 ± 0·26) less radiogenic than those from Midland Valley galenas (18·22 ± 0·12, 15·55 ± 0·05, 38·13 ± 0·14) whilst galena lead from the Southern Uplands (18·28 ± 0·12, 15·56 ± 0·03, 38·21 ± 0·18) is more radiogenic than that from the southern Midland Valley (18·12 ± 0·06, 15·52 ± 0·02, 38·06 ±0·10). The change in isotopie composition across the Highland Boundary fault reflects the presence or absence of Dalradian rocks which included a magmatic component of lead. Galenas from the Dalradian sequence in Islay, where igneous rocks are lacking, have a composition (18·14±0·04, 15·51±0·01, 37·90±0·02) more like Midland Valley galenas. In the Southern Uplands, galenas yield lead isotope ratios similar to those of feldspars from Caledonian granite (18·30 ± 0·14, 15·57 ± 0·04, 37·96 ± 0·15) analysed by Blaxland et al. (1979). The similar ratios reflect the incorporation of Lower Palaeozoic sedimentary rocks into the granite magma, rather than a granitic source for the mineralisation. The granites were then thermal-structural foci for later mineralising fluids which leached metals from the surrounding rocks. Within the Midland Valley, galenas hosted in Lower Devonian-Lower Carboniferous lavas are notably more radiogenic (18·31 ±0·12, 15·58 ± 0·06, 38·20 ± 0·16) than sediment-hosted galenas (18·14 ± 0·07, 15·52 ± 0·02, 38·08 ± 0·10). The Devonian lavas at least may have inherited lead from subducted (? Lower Palaeozoic) rock incorporated in the primary magma.


1984 ◽  
Vol 75 (2) ◽  
pp. 113-133 ◽  
Author(s):  
Gordon B. Curry ◽  
B. J. Bluck ◽  
C. J. Burton ◽  
J. K. Ingham ◽  
David J. Siveter ◽  
...  

I. ABSTRACT: Research interest in the Highland Border Complex has been pursued sporadically during the past 150 years. The results and conclusions have emphasised the problems of dealing with a lithologically disparate association which crops out in isolated, fault-bounded slivers along the line of the Highland Boundary fault. For much of the present century, the debate has centred on whether the rocks of the complex have affinities with the Dalradian Supergroup to the N, or are a discrete group. Recent fossil discoveries in a wide variety of Highland Border rocks have confirmed that many are of Ordovician age, and hence cannot have been involved in at least the early Grampian deformational events (now accurately dated as pre-Ordovician) which affect the Dalradian Supergroup. Such palaeontological discoveries form the basis for a viable biostratigraphical synthesis. On a regional scale, it is apparent that the geological history of the Highland Border rocks must be viewed in the context of plate boundary tectonism along the entire northwestern margin of Iapetus during Palaeozoic times.II. ABSTRACT: Silicified articulate brachiopods from the Lower Ordovician (Arenig) Dounans Limestone are extremely rare but the stratigraphically diagnostic generaArchaeorthisSchuchert and Cooper, andOrthidiumHall and Clarke, have been identified. In addition, three specimens with characteristic syntrophiid morphology have been recovered. Inarticulate brachiopods are known from Stonehaven and Bofrishlie Burn near Aberfoyle, and have also been previously recorded from Arran.III. ABSTRACT: Micropalaeontological investigation of the Highland Border Complex has produced a range of microfossils including chitinozoans, coleolids, calcispheres and other more enigmatic objects. The stratigraphical ranges of the species lie almost entirely within the Ordovician and reveal a scatter of ages for different lithologies from the Arenig through to the Caradoc or Ashgill, with a pronounced erosional break between the Llandeilo and the Caradoc.IV. ABSTRACT: A Lower Ordovician (Arenig Series) silicified ostracode fauna from the Highland Border Dounans Limestone at Lime Craig Quarry, Aberfoyle, Central Scotland, represents the earliest record of this group of Crustacea from the British part of the early Palaeozoic ‘North American’ plate.V. ABSTRACT: Palaeontological age determinations for a variety of Highland Border rocks are presented. The data are based on the results of recent prospecting which has demonstrated that macro- and microfossils are present in a much greater range of Highland Border lithologies than previously realised. Data from other studies are also incorporated, as are modern taxonomie re-assessments of older palaeontological discoveries, in a comprehensive survey of Highland Border biostratigraphy. These accumulated data demonstrate that all fossiliferous Highland Border rocks so far discovered are of Ordovician age, with the exception of the Lower Cambrian Leny Limestone.VI. ABSTRACT: The Highland Border Complex consists of at least four rock assemblages: a serpentinite and possibly other ophiolitic rocks of Early or pre-Arenig age; a sequence of limestones and conglomerates of Early Arenig age; a succession of dark shales, cherts, quartz wackes, basic lavas and associated volcanogenic sediments of Llanvirn and ? earlier age; and an assemblage of limestones, breccias, conglomerates and arenites with subordinate shales of Caradoc or Ashgill age. At least three assemblages are divided by unconformities and in theirmost general aspect have similarities with coeval rocks in western Ireland.The Highland Border Complex probably formed N of the Midland Valley arc massif in a marginal sea comparable with the Sunda shelf adjacent to Sumatra–Java. Strike-slip and thrust emplacement of the whole Complex in at least four episodes followed the probable generation of all or part of its rocks by pull-apart mechanisms.


1992 ◽  
Vol 129 (1) ◽  
pp. 17-40 ◽  
Author(s):  
Małgorzata Moczydłowska ◽  
Gonzalo Vidal

AbstractAcritarchs from the Lower Cambrian Læsså formation on Bornholm, Denmark, are taxonomically diverse. Their state of preservation, including thermal, mechanical and chemical alteration, is discussed. Different states of thermal maturation of acritarchs in shales and phosphorites of the Broens Odde member could be explained in terms of possible irradiation from natural radioactive decay. The microfossils form two age-diagnostic assemblages that allow recognition of the Skiagia ornata–Fimbriaglomerella membranacea and Heliosphaeridium dissimilare–Skiagia ciliosa Assemblage Zones within the Broens Odde member of the Laeså formation. Acritarch-based biostratigraphy indicates that the Lower Cambrian Balka Formation and Læså formation correspond to the Schmidliellus mickwitzi Zone and Holmia kjerulfi Assemblage Zone recognized in Baltoscandia and the East European Platform. Acritarch distribution within three different depositional settings indicates that comparable spectra of morphotypes occurred in different depositional environments. This suggests the absence of facies control. During early Cambrian times palaeoenvironmental barriers in shallow, epicontinental shelf basins constituted a minor obstacle for widespread distribution of acritarch taxa. Formerly proposed early Palaeozoic acritarch provincialism appears insufficiently documented in the fossil record and no evidence could be extracted from the Cambrian record. Following a rapid radiation at the onset of the Phanerozoic, Cambrian phytoplankton populations underwent dispersion following oxygenic and nutrient-rich bodies of water within epicontinental and presumably basinal environments. Lower Cambrian acritarch taxa were largely cosmopolitan and little affected by lithofacies associations. A continuous flow of data is contributing to the emergence of acritarch-based biostratigraphy. Its apparent consistency suggests great usefulness for interregional and detailed event correlation.


1993 ◽  
Vol 130 (5) ◽  
pp. 613-620 ◽  
Author(s):  
R. J. Merriman ◽  
T. C. Pharaoh ◽  
N. H. Woodcock ◽  
P. Daly

AbstractWhite mica (illite) crystallinity data, derived mostly from borehole samples, have been used to generate a contoured metamorphic map of the concealed Caledonide fold belt of eastern England and the foreland formed by the Midlands Microcraton. The northern subcrop of the fold belt is characterized by epizonal phyllites and quartzites of possible Cambrian age, whereas anchizonal grades characterize Silurian to Lower Devonian strata of the Anglian Basin in the southern subcrop of the fold belt. Regional metamorphism in the Anglian Basin resulted from deep burial and Acadian deformation beneath a possible overburden of 7 km, assuming a metamorphic field gradient of 36 °C km-1. Late Proterozoic volcaniclastic rocks forming the basement of the microcraton show anchizonal to epizonal grades that probably developed during late Avalonian metamorphism. Cambrian to Tremadoc strata, showing late diagenetic alteration, rest on the basement with varying degrees of metamorphic discordance. During early Palaeozoic times, much of the microcraton was a region of slow subsidence with overburden thicknesses of 3.3–5.5 km. However, concealed Tremadoc strata in the northeast of the microcraton reach anchizonal grades and may have been buried to depths of 7 km beneath an overburden of uncertain age.


Author(s):  
Bingshuang Zhao ◽  
Xiaoping Long ◽  
Jin Luo ◽  
Yunpeng Dong ◽  
Caiyun Lan ◽  
...  

The crustal evolution of the Yangtze block and its tectonic affinity to other continents of Rodinia and subsequent Gondwana have not been well constrained. Here, we present new U-Pb ages and Hf isotopes of detrital zircons from the late Neoproterozoic to early Paleozoic sedimentary rocks in the northwestern margin of the Yangtze block to provide critical constraints on their provenance and tectonic settings. The detrital zircons of two late Neoproterozoic samples have a small range of ages (0.87−0.67 Ga) with a dominant age peak at 0.73 Ga, which were likely derived from the Hannan-Micangshan arc in the northwestern margin of the Yangtze block. In addition, the cumulative distribution curves from the difference between the depositional age and the crystalline age (CA−DA) together with the mostly positive εHf(t) values of these zircon crystals (−6.8 to +10.7, ∼90% zircon grains with εHf[t] > 0) suggest these samples were deposited in a convergent setting during the late Neoproterozoic. In contrast, the Cambrian−Silurian sediments share a similar detrital zircon age spectrum that is dominated by Grenvillian ages (1.11−0.72 Ga), with minor late Paleoproterozoic (ca. 2.31−1.71 Ga), Mesoarchean to Neoarchean (3.16−2.69 Ga), and latest Archean to early Paleoproterozoic (2.57−2.38 Ga) populations, suggesting a significant change in the sedimentary provenance and tectonic setting from a convergent setting after the breakup of Rodinia to an extensional setting during the assembly of Gondwana. However, the presence of abundant Grenvillian and Neoarchean ages, along with their moderately to highly rounded shapes, indicates a possible sedimentary provenance from exotic continental terrane(s). Considering the potential source areas around the Yangtze block when it was a part of Rodinia or Gondwana, we suggest that the source of these early Paleozoic sediments had typical Gondwana affinities, such as the Himalaya, north India, and Tarim, which is also supported by their stratigraphic similarity, newly published paleomagnetic data, and tectono-thermal events in the northern fragments of Gondwana. This implies that after prolonged subduction in the Neoproterozoic, the northwestern margin of the Yangtze block began to be incorporated into the assembly of Gondwana and then accept sediments from the northern margin of Gondwanaland in a passive continental margin setting.


1990 ◽  
Vol 127 (5) ◽  
pp. 393-405 ◽  
Author(s):  
Luo Zhili ◽  
Jin Yizhong ◽  
Zhao Xikui

AbstractThe Yangtze Platform (Yangtze Palaeoplate) drifted into the area of southern China following late Silurian tectonism. In late Palaeozoic to early Mesozoic time the Yangtze Platform was subjected to strong extensional movements in its southeastern region within Yunnan, Guizhou, Guangxi and Hunan provinces, and along its northwestern margin in the Songpan-Ganzi area. Taphrogenesis (intracontinental extension) began in Devonian times, climaxed with the late Permian eruption of the Emeishan basalts, and ended in mid Triassic times. Therefore, the senior author (LZL) has named this extension the ‘Emei Taphrogenesis’, a phenomenon that was constrained by the neighbouring tectonic units of the Yangtze Platform. The platform has been substantially affected by the early Palaeozoic south China fold zone along its eastern margin, and by the late Palaeozoic opening of the Tethys Ocean on the northwestern margin. This paper delineates the tectonic patterns associated with the Emei Taphrogenesis.


2013 ◽  
Vol 32 (2) ◽  
pp. 207-217 ◽  
Author(s):  
Lei Zhang ◽  
Taniel Danelian ◽  
Qinglai Feng ◽  
Thomas Servais ◽  
Nicolas Tribovillard ◽  
...  

Abstract. Research on Lower Cambrian siliceous sedimentary rocks is important for understanding the origin and early involvement of polycystine Radiolaria in the silica cycle. During our study, thin sections and HF acid processing of black cherts and shales from the Hetang Formation that crops out in the Xintangwu section (west Zhejiang Province, south China) were made. We report on the presence of siliceous spherical microfossils (possibly Radiolaria) associated with sponge spicules and acritarchs. Their size and the presence of residual spines on some spherical siliceous microfossils observed in both residues and thin sections of cherts from the top of Member ‘a’ of the Hetang Formation argue for the possible presence of radiolarians. Based on the Small Shelly Fossil assemblages reported in previous studies, this interval should be considered as Qiongzhusian (Atdabanian–Early Botomian) in age. Finally, the values of the Ge/Si ratio measured on black cherts of the Hetang Formation point to a biogenic origin of the silica.


Tectonics ◽  
2009 ◽  
Vol 28 (4) ◽  
pp. n/a-n/a ◽  
Author(s):  
Simon P. Holford ◽  
Jonathan P. Turner ◽  
Paul F. Green ◽  
Richard R. Hillis

Sign in / Sign up

Export Citation Format

Share Document