II.—The Scandinavian Ice-Sheet and the Baltic Glacier: a Sceptical Commentary

1899 ◽  
Vol 6 (1) ◽  
pp. 4-13
Author(s):  
Henry H. Howorth

If the paper on the recent geology of Sweden which has already appeared in the GEOLOGICAL MAGAZINE is sound in argument (and I have not met anyone yet who has answered it), it follows that the views ordinarily current in regard to the glacial geology of Northern Europe will have to be greatly modified. Scandinavia is confessedly the great focus and centre of the phenomena which have been interpreted as glacial.

1999 ◽  
Vol 28 ◽  
pp. 83-89 ◽  
Author(s):  
A. J. Payne ◽  
D.J. Baldwin

AbstractThis work attempts to explain the fan-like landform assemblages observed in satellite images of the area covered by the former Scandinavian ice sheet (SIS). These assemblages have been interpreted as evidence of large ice streams within the SIS. If this interpretation is correct, then it calls into doubt current theories on the formation of ice streams. These theories regard soft sediment and topographic troughs as being the key determinants of ice-stream location. Neither can be used to explain the existence of ice streams on the flat, hard-rock area of the Baltic Shield. Initial results from a three-dimensional, thermomechanical ice-sheet model indicate that interactions between ice flow, form and temperature can create patterns similar to those mentioned above. The model uses a realistic, 20 km resolution gridded topography and a simple parameterization of accumulation and ablation. It produces patterns of maximum ice-sheet extent, which are similar to those reconstructed from the area’s glacial geomorphology. Flow in the maximum, equilibrium ice sheet is dominated by wedges of warm, low-viscosity, fast-flowing ice. These are separated by areas of cold, slow-flowing ice. This patterning appears to develop spontaneously as the modelled ice sheet grows.


2021 ◽  
Author(s):  
Izabela Szuman ◽  
Jakub Z. Kalita ◽  
Marek W. Ewertowski ◽  
Chris D. Clark ◽  
Stephen J. Livingstone ◽  
...  

Abstract. Here we present a comprehensive dataset of glacial geomorphological features covering an area of 65 000 km2 in central west Poland, located along the southern sector of the last Scandinavian Ice Sheet, within the limits of the Baltic Ice Stream Complex. The GIS dataset is based on mapping from a 0.4 m high-resolution Digital Elevation Model derived from airborne Light Detection and Ranging data. Ten landform types have been mapped: Mega-Scale Glacial Lineations, drumlins, marginal features (moraine chains, abrupt margins, edges of ice-contact fans), ribbed moraines, tunnel valleys, eskers, geometrical ridge networks and hill-hole pairs. The map comprises 5461 individual landforms or landform parts, which are available as vector layers in GeoPackage format at http://doi.org/10.5281/zenodo.4570570 (Szuman et al., 2021a). These features constitute a valuable data source for reconstructing and modelling the last Scandinavian Ice Sheet extent and dynamics from the Middle Weichselian Scandinavian Ice Sheet advance, 50–30 ka BP, through the Last Glacial Maximum, 25–21 ka BP and Young Baltic Advances, 18–15 ka BP. The presented data are particularly useful for modellers, geomorphologists and glaciologists.


2021 ◽  
Vol 13 (10) ◽  
pp. 4635-4651
Author(s):  
Izabela Szuman ◽  
Jakub Z. Kalita ◽  
Marek W. Ewertowski ◽  
Chris D. Clark ◽  
Stephen J. Livingstone ◽  
...  

Abstract. Here we present a comprehensive dataset of glacial geomorphological features covering an area of 65 000 km2 in central west Poland, located along the southern sector of the last Scandinavian Ice Sheet, within the limits of the Baltic Ice Stream Complex. The GIS dataset is based on mapping from a 0.4 m high-resolution digital elevation model derived from airborne light detection and ranging data. Ten landform types have been mapped: mega-scale glacial lineations, drumlins, marginal features (moraine chains, abrupt margins, edges of ice-contact fans), ribbed moraines, tunnel valleys, eskers, geometrical ridge networks, and hill–hole pairs. The map comprises 5461 individual landforms or landform parts, which are available as vector layers in GeoPackage format at https://doi.org/10.5281/zenodo.4570570 (Szuman et al., 2021a). These features constitute a valuable data source for reconstructing and modelling the last Scandinavian Ice Sheet extent and dynamics from the Middle Weichselian Scandinavian Ice Sheet advance, 50–30 ka, through the Last Glacial Maximum, 25–21 ka, and Young Baltic advances, 18–15 ka. The presented data are particularly useful for modellers, geomorphologists, and glaciologists.


2014 ◽  
Vol 60 (219) ◽  
pp. 29-40 ◽  
Author(s):  
C.C. Clason ◽  
P.J. Applegate ◽  
P. Holmlund

AbstractWe simulated the Late Weichselian extent and dynamics of the Eurasian ice sheets using the shallow-ice approximation ice-sheet model SICOPOLIS. Our simulated Last Glacial Maximum ice-sheet extents closely resemble geomorphological reconstructions, and areas of modelled fast flow are consistent with the known locations of palaeo-ice streams. Motivated by documented velocity response to increased meltwater inputs on Greenland, we tested the sensitivity of the simulated ice sheet to the surface meltwater effect (SME) through a simple parameterization relating basal sliding to local surface melt rate and ice thickness. Model runs including the SME produce significantly reduced ice volume during deglaciation, with maximum ice surface velocities much greater than in similar runs that neglect the SME. We find that the simple treatment of the SME is not applicable across the whole ice sheet; however, our results highlight the importance of the SME for dynamic response to increased melting. The southwest sector of the Scandinavian ice sheet is most sensitive to the SME, with fast flow in the Baltic ice stream region shutting off by 15 ka BP when the SME is turned on, coincident with a retreat of the ice-margin position into the Gulf of Bothnia.


Author(s):  
Anneli Adler ◽  
Almir Karacic ◽  
Ann-Christin Rönnberg Wästljung ◽  
Ulf Johansson ◽  
Kaspars Liepins ◽  
...  

AbstractThe increased demand for wood to replace oil-based products with renewable products has lifted focus to the Baltic Sea region where the environment is favorable for woody biomass growth. The aim of this study was to estimate broad-sense heritabilities and genotype-by-environment (G×E) interactions in growth and phenology traits in six climatically different regions in Sweden and the Baltics. We tested the hypothesis that both bud burst and bud set have a significant effect on the early growth of selected poplar clones in Northern Europe. Provenance hybrids of Populus trichocarpa adapted to the Northern European climate were compared to reference clones with adaptation to the Central European climate. The volume index of stemwood was under low to medium genetic control with heritabilities from 0.22 to 0.75. Heritabilities for phenology traits varied between 0.31 and 0.91. Locally chosen elite clones were identified. G×E interactions were analyzed using pairwise comparisons of the trials. Three different breeding zones for poplars between the latitudes of 55° N and 60° N in the Baltic Sea Region were outlined. The studied provenance hybrids with origin from North America offer a great possibility to broaden the area with commercial poplar plantations in Northern Europe and further improve the collection of commercial clones to match local climates. We conclude that phenology is an important selection criterion after growth.


Sign in / Sign up

Export Citation Format

Share Document