Marine redox evolution in the early Cambrian Yangtze shelf margin area: evidence from trace elements, nitrogen and sulphur isotopes

2017 ◽  
Vol 154 (6) ◽  
pp. 1344-1359 ◽  
Author(s):  
GUANG-YI WEI ◽  
HONG-FEI LING ◽  
DA LI ◽  
WEI WEI ◽  
DAN WANG ◽  
...  

AbstractNitrogen is an essential element for biological activity, and nitrogen isotopic compositions of geological samples record information about both marine biological processes and environmental evolution. However, only a few studies of N isotopes in the early Cambrian have been published. In this study, we analysed nitrogen isotopic compositions, as well as trace elements and sulphur isotopic compositions of cherts, black shales, carbonaceous shales and argillaceous carbonates from the Daotuo drill core in Songtao County, NE Guizhou Province, China, to reconstruct the marine redox environment of both deep and surface seawater in the study area of the Yangtze shelf margin in the early Cambrian. The Mo–U covariation pattern of the studied samples indicates that the Yangtze shelf margin area was weakly restricted and connected to the open ocean through shallow water flows. Mo and U concentrations, δ15Nbulk and δ34Spy values of the studied samples from the Yangtze shelf margin area suggest ferruginous but not sulphidic seawater and low marine sulphate concentration (relatively deep chemocline) in the Cambrian Fortunian and early Stage 2; sulphidic conditions (shallow chemocline and anoxic photic zone) in the upper Cambrian Stage 2 and lower Stage 3; and the depression of sulphidic seawater in the middle and upper Cambrian Stage 3. Furthermore, the decreasing δ15N values indicate shrinking of the marine nitrate reservoir during the middle and upper Stage 3, which reflects a falling oxygenation level in this period. The environmental evolution was probably controlled by the changing biological activity through its feedback on the local marine environment.

Author(s):  
Guangyou Zhu ◽  
Tingting Li ◽  
Kun Zhao ◽  
Chao Li ◽  
Meng Cheng ◽  
...  

The widely developed black shales deposited during the early Cambrian recorded paleoenvironmental information about coeval seawater. Numerous studies have been conducted on these shales to reconstruct the paleomarine environment during this time period. However, most research has been conducted on stratigraphic sections in South China, and equivalent studies of sections from other cratons are relatively rare. Here, we report Mo isotopic compositions as well as redox-sensitive trace-element and iron (Fe) speciation data for black shales of the Lower Cambrian Yuertusi Formation from the Tarim block (i.e., a small craton). The Fe speciation data show high FeHR/FeT and Fepy/FeHR ratios, indicating roughly sustained euxinic bottom-water conditions during their deposition. Based on Mo isotopic compositions (δ98/95Mo), we further classified the euxinic black shales into two intervals: a lower interval (0−21.3 m) and an upper interval (21.3−32.3 m). The lower interval is characterized by variable Mo isotopic compositions (−2.12‰ to +0.57‰, mean = −0.52‰ ± 0.72‰), with an obvious negative excursion in its middle portion. The overlying upper interval has relatively heavy δ98/95Mo values up to +1.42‰ (mean = +0.62‰ ± 0.37‰). We ascribe δ98/95Mo differences in the lower and upper intervals to inadequate aqueous H2S concentrations for quantitative thiomolybdate formation under euxinic conditions. The most negative Mo isotope excursion may have been caused by upwelling hydrothermal inputs during a transgression, consistent with significantly elevated total organic carbon (TOC) contents, Mo and U enrichments, and Fe supply. Relatively positive δ98/95Mo values in the upper interval have roughly similar variations with other coeval sections, indicating such variations were common for early Cambrian euxinic deposits, and they were most likely caused by local differences in [H2S]aq. Compilation of Mo isotope data from the early Cambrian and earlier times further indicates relatively oxygenated seawater, especially the deep-marine areas during the early Cambrian before reaching a state like modern seawater.


2019 ◽  
Vol 521 ◽  
pp. 59-75 ◽  
Author(s):  
Lukáš Ackerman ◽  
Jan Pašava ◽  
Adéla Šípková ◽  
Eva Martínková ◽  
Eva Haluzová ◽  
...  

1983 ◽  
Vol 7 ◽  
pp. 178-190
Author(s):  
Francoise Debrenne

The Archaeocyatha were marine organisms developing mineral skeletons and using calcium carbonate for this purpose. Remains of their cups are found in carbonate shelfs and reef environments of the Early Cambrian seas. Few representatives of the family Archaeocyathidae are found through the Middle Cambrian to the Upper Cambrian (Debrenne, Rozanov and Webers, in press).


Sign in / Sign up

Export Citation Format

Share Document