scholarly journals Multiple semidirect products of associative systems

1989 ◽  
Vol 31 (3) ◽  
pp. 353-369 ◽  
Author(s):  
Richard Steiner

Suppose that a group G is the semidirect product of a subgroup N and a normal subgroup M. Then the elements of G have unique expressions mn (m ∈ M, n ∈ N) and the commutator functionmaps N x M into M. In fact there is an action (by automorphisms) of N on M given byConversely, if one is given an action of a group N on a group M then one can construct a semidirect product.

2013 ◽  
Vol 13 (01) ◽  
pp. 1350077 ◽  
Author(s):  
JAN HORA ◽  
PŘEMYSL JEDLIČKA

Automorphic loops are loops where all inner mappings are automorphisms. We study when a semidirect product of two abelian groups yields a commutative automorphic loop such that the normal subgroup lies in the middle nucleus. With this description at hand we give some examples of such semidirect products.


Author(s):  
Ken-Ichi Tahara

Sandling(6) determined the dimension subgroups of the semidirect product of a normal abelian subgroup and a subgroup; namely if G = NT is the semidirect product of a normal abelian subgroup N and a subgroup T, then the mth dimension subgroup Dm(G) of G is equal to [N, (m – 1) G] · Dm (T) for all m ≧ 1, where


1981 ◽  
Vol 24 (1) ◽  
pp. 79-85 ◽  
Author(s):  
H. D. Junghenn

AbstractLet S and T be locally compact topological semigroups and a semidirect product. Conditions are determined under which topological left amenability of S and T implies that of , and conversely. The results are used to show that for a large class of semigroups which are neither compact nor groups, various notions of topological left amenability coincide.


1969 ◽  
Vol 10 (3-4) ◽  
pp. 497-498 ◽  
Author(s):  
Gilbert Baumslag

Let G be a group on two generators a and b subject to the single defining relation a = [a, ab]: . As usual [x, y] = x−1y−1xy and xy = y−1xy if x and y are elements of a group. The object of this note is to show that every finite quotient of G is cyclic. This implies that every normal subgroup of G contains the derived group G′. But by Magnus' theory of groups with a single defining relation G′ ≠ 1 ([1], §4.4). So G is not residually finite. This underlines the fact that groups with a single defining relation need not be residually finite (cf. [2]).


1973 ◽  
Vol 16 (4) ◽  
pp. 416-430 ◽  
Author(s):  
John Boris Miller

Let (G, ≼) be an l-group having a compatible tight Riesz order ≦ with open-interval topology U, and H a normal subgroup. The first part of the paper concerns the question: Under what conditions on H is the structure of (G, ≼, ∧, ∨, ≦, U) carried over satisfactorily to by the canonical homomorphism; and its answer (Theorem 8°): H should be an l-ideal of (G, ≼) closed and not open in (G, U). Such a normal subgroup is here called a tangent. An essential step is to show that ≼′ is the associated order of ≦′.


1968 ◽  
Vol 16 (1) ◽  
pp. 19-35 ◽  
Author(s):  
Hans-Jürgen Hoehnke

It is well-known that a homomorphism ø(A→B) between groups A and B induces a homomorphism ø*(ZA→ZB) between the corresponding group rings ZA and ZB over the ring of integers Z. The identical congruence O on B and the unit element eB of B can be characterised by the equations x–y = 0 and x–eB = 0 (x,y ∈ B) respectively. Similarly the congruence Γø corresponding to ø and the corresponding normal subgroup of A areand {x∈A1 = A,(x–eA)ø = 0} respectively.


1983 ◽  
Vol 26 (2) ◽  
pp. 233-240 ◽  
Author(s):  
Paul Milnes

AbstractA classical result of I. Glicksberg and K. de Leeuw asserts that the almost periodic compactification of a direct product S × T of abelian semigroups with identity is (canonically isomorphic to) the direct product of the almost periodic compactiflcations of S and T. Some efforts have been made to generalize this result and recently H. D. Junghenn and B. T. Lerner have proved a theorem giving necessary and sufficient conditions for an F-compactification of a semidirect product S⊗σT to be a semidirect product of compactiflcations of S and T. A different such theorem is presented here along with a number of corollaries and examples which illustrate its scope and limitations. Some behaviour that can occur for semidirect products, but not for direct products, is exposed


Author(s):  
L. N. Vaserstein

Let A be an associative ring with 1. For any natural number n, let GLnA denote the group of invertible n by n matrices over A, and let EnA be the subgroup generated by all elementary matrices ai, j, where aεA and 1 ≤ i ≡ j ≤ n. For any (two-sided) ideal B of A, let GLnB be the kernel of the canonical homomorphism GLnA→GLn(A/B) and Gn(A, B) the inverse image of the centre of GLn(A/B) (when n > 1, the centre consists of scalar matrices over the centre of the ring A/B). Let EnB denote the subgroup of GLnB generated by its elementary matrices, and let En(A, B) be the normal subgroup of EnA generated by EnB (when n > 2, the group GLn(A, B) is generated by matrices of the form ai, jbi, j(−a)i, j with aA, b in B, i ≡ j, see [7]). In particuler,is the centre of GLnA


1969 ◽  
Vol 10 (3-4) ◽  
pp. 469-474 ◽  
Author(s):  
Norman Blackburn

Magnus [4] proved the following theorem. Suppose that F is free group and that X is a basis of F. Let R be a normal subgroup of F and write G = F/R. Then there is a monomorphism of F/R′ in which ; here the tx are independent parameters permutable with all elements of G. Later investigations [1, 3] have shown what elements can appear in the south-west corner of these 2 × 2 matrices. In this form the theorem subsequently reappeared in proofs of the cup-product reduction theorem of Eilenberg and MacLane (cf. [7, 8]). In this note a direct group-theoretical proof of the theorems will be given.


Author(s):  
Siegfried Moran

Let G be an arbitrary group and Zn(G) denote the group algebra of G over the integers modulo n. If δi(G) denotes ith power of the augmentation ideal δ(G) of Zn(G), thenis easily seen to be a normal subgroup of G. It is denoted by Di, n(G) and is called ith dimension subgroup of G modulo n. It can be shown that these dimension subgroups are determined by the dimension subgroups modulo a power of a prime p. Hence we shall restrict our attention to these dimension subgroups.


Sign in / Sign up

Export Citation Format

Share Document