scholarly journals Interpolation and inequalities for functions of exponential type: the Arens irregularity of an extremal algebra

1993 ◽  
Vol 35 (3) ◽  
pp. 325-326
Author(s):  
M. J. Crabb ◽  
C. M. McGregor

For any compact convex set K ⊂ ℂ there is a unital Banach algebra Ea(K) generated by an element h in which every polynomial in h attains its maximum norm over all Banach algebras subject to the numerical range V(h) being contained in K, [1]. In the case of K a line segment in ℝ, we show here that Ea(K) does not have Arens regular multiplication. We also show that ideas about Ea(K) give simple proofs of, and extend, two inequalities of C. Frappier [4].

1985 ◽  
Vol 28 (1) ◽  
pp. 91-95
Author(s):  
J. Martinez-Moreno ◽  
A. Rodriguez-Palacios

If a is an element of a complex unital Banach algebra whose numerical range is confined to a closed angular region with vertex at zero and angle strictly less than π, we imbed a in a holomorphic semigroup with parameter in the open right half plane.There has been recently a great development in the theory of semigroups in Banach algebras (see [6]), with attention focused on the relation between the structure of a given Banach algebra and the existence of continuous or holomorphic non-trivial semigroups with certain properties with range in this algebra. The interest of this paper arises from the fact that we relate in it, we think for the first time, this new point of view in the theory of Banach algebras with the already classic one of numerical ranges [2,3]. The proofs of our results use, in addition to some basic ideas from numerical ranges in Banach algebras, the concept of extremal algebra Ea(K) of a compact convex set K in ℂ due to Bollobas [1] and concretely the realization of Ea(K) achieved by Crabb, Duncan and McGregor [4].


1978 ◽  
Vol 83 (3) ◽  
pp. 419-427 ◽  
Author(s):  
C. J. K. Batty

Alfsen and Andersen(2) defined the centre of the complete order-unit space A(K) associated with a compact convex set K to be the set of functions in A(K) which multiply with A(K) pointwise on the extreme boundary of K, thereby generalizing the concept of centres of C*-algebras. It is therefore possible to extend this definition to include the space A (K; B) of continuous affine functions of K into a Banach algebra B. Such spaces arise in the theory of weak tensor products E ⊗λB of B with a Banach space E, which may be embedded in A(K; B) where K is the unit ball of E* in the weak* topology. Andersen and Atkinson(4) considered multipliers in A(K; B) and showed that if B is unital, then the multipliers are precisely those functions which are continuous in the facial topology on the extreme boundary. It is shown here that this result extends to non-unital Banach algebras with trivial left annihilator.


2001 ◽  
Vol 70 (3) ◽  
pp. 323-336 ◽  
Author(s):  
T. S. S. R. K. Rao ◽  
A. K. Roy

AbstractIn this paper we give a complete description of diameter-preserving linear bijections on the space of affine continuous functions on a compact convex set whose extreme points are split faces. We also give a description of such maps on function algebras considered on their maximal ideal space. We formulate and prove similar results for spaces of vector-valued functions.


1984 ◽  
Vol 16 (02) ◽  
pp. 324-346 ◽  
Author(s):  
Wolfgang Weil ◽  
John A. Wieacker

For certain stationary random setsX, densitiesDφ(X) of additive functionalsφare defined and formulas forare derived whenKis a compact convex set in. In particular, for the quermassintegrals and motioninvariantX, these formulas are in analogy with classical integral geometric formulas. The case whereXis the union set of a Poisson processYof convex particles is considered separately. Here, formulas involving the intensity measure ofYare obtained.


1984 ◽  
Vol 16 (2) ◽  
pp. 324-346 ◽  
Author(s):  
Wolfgang Weil ◽  
John A. Wieacker

For certain stationary random sets X, densities Dφ (X) of additive functionals φ are defined and formulas for are derived when K is a compact convex set in . In particular, for the quermassintegrals and motioninvariant X, these formulas are in analogy with classical integral geometric formulas. The case where X is the union set of a Poisson process Y of convex particles is considered separately. Here, formulas involving the intensity measure of Y are obtained.


1974 ◽  
Vol 6 (03) ◽  
pp. 563-579 ◽  
Author(s):  
G. Matheron

A compact convex set in RN is Steiner if it is a finite Minkowski sum of line segments, or a limit of such finite sums, and then satisfies an extension of the Steiner formula. With each Poisson hyperplane stationary process A is uniquely associated a Steiner set M, and for any linear variety V, the Steiner set associated with is the projection of M on V. The density of the order k network Ak (i.e., the set of the intersections of k hyperplanes belonging to A) is linked with simple geometrical properties of M. In the isotropic case, the expression of the covariance measures associated with Ak is derived and compared with the analogous results obtained for (N — k)-dimensional Poisson flats.


1984 ◽  
Vol 27 (2) ◽  
pp. 233-237 ◽  
Author(s):  
H. Groemer

AbstractIn the euclidean plane let K be a compact convex set and Sl, S2,… strips of respective widths wl, w2,… Some conditions on Σ wi are given that imply that K can be covered by translates of the strips Si. These conditions involve the perimeter, the diameter, or the minimal width of K and yield improvements of previously known results.


1996 ◽  
Vol 28 (02) ◽  
pp. 384-393 ◽  
Author(s):  
Lutz Dümbgen ◽  
Günther Walther

The Hausdorff distance between a compact convex set K ⊂ ℝd and random sets is studied. Basic inequalities are derived for the case of being a convex subset of K. If applied to special sequences of such random sets, these inequalities yield rates of almost sure convergence. With the help of duality considerations these results are extended to the case of being the intersection of a random family of halfspaces containing K.


Sign in / Sign up

Export Citation Format

Share Document