scholarly journals SECOND-ORDER DEFORMATIONS OF HYDRODYNAMIC-TYPE POISSON BRACKETS

2009 ◽  
Vol 51 (A) ◽  
pp. 75-82
Author(s):  
JAMES T. FERGUSON

AbstractThis paper is concerned with the properties of differential-geometric-type Poisson brackets specified by a differential operator of degree 2. It also considers the conditions required for such a Poisson bracket to form a bi-Hamiltonian structure with a hydrodynamic-type Poisson bracket.

Author(s):  
M. Eastwood ◽  
G. Marí Beffa

We relate the geometric Poisson brackets on the 2-Grassmannian in ℝ4 and on the (2, 2) Möbius sphere. We show that, when written in terms of local moving frames, the geometric Poisson bracket on the Möbius sphere does not restrict to the space of differential invariants of Schwarzian type. But when the concept of conformal natural frame is transported from the conformal sphere into the Grassmannian, and the Poisson bracket is written in terms of the Grassmannian natural frame, it restricts and results in either a decoupled system or a complexly coupled system of Korteweg–de Vries (KdV) equations, depending on the character of the invariants. We also show that the bi-Hamiltonian Grassmannian geometric brackets are equivalent to the non-commutative KdV bi-Hamiltonian structure. Both integrable systems and Hamiltonian structure can be brought back to the conformal sphere.


Author(s):  
DMITRI I. PANYUSHEV ◽  
OKSANA S. YAKIMOVA

AbstractLet 𝔮 be a finite-dimensional Lie algebra. The symmetric algebra (𝔮) is equipped with the standard Lie–Poisson bracket. In this paper, we elaborate on a surprising observation that one naturally associates the second compatible Poisson bracket on (𝔮) to any finite order automorphism ϑ of 𝔮. We study related Poisson-commutative subalgebras (𝔮; ϑ) of 𝒮(𝔮) and associated Lie algebra contractions of 𝔮. To obtain substantial results, we have to assume that 𝔮 = 𝔤 is semisimple. Then we can use Vinberg’s theory of ϑ-groups and the machinery of Invariant Theory.If 𝔤 = 𝔥⊕⋯⊕𝔥 (sum of k copies), where 𝔥 is simple, and ϑ is the cyclic permutation, then we prove that the corresponding Poisson-commutative subalgebra (𝔮; ϑ) is polynomial and maximal. Furthermore, we quantise this (𝔤; ϑ) using a Gaudin subalgebra in the enveloping algebra 𝒰(𝔤).


1995 ◽  
Vol 10 (17) ◽  
pp. 2537-2577 ◽  
Author(s):  
H. ARATYN ◽  
E. NISSIMOV ◽  
S. PACHEVA ◽  
A.H. ZIMERMAN

Toda lattice hierarchy and the associated matrix formulation of the 2M-boson KP hierarchies provide a framework for the Drinfeld-Sokolov reduction scheme realized through Hamiltonian action within the second KP Poisson bracket. By working with free currents, which Abelianize the second KP Hamiltonian structure, we are able to obtain a unified formalism for the reduced SL (M+1, M−k) KdV hierarchies interpolating between the ordinary KP and KdV hierarchies. The corresponding Lax operators are given as superdeterminants of graded SL (M+1, M−k) matrices in the diagonal gauge and we describe their bracket structure and field content. In particular, we provide explicit free field representations of the associated W(M, M−k) Poisson bracket algebras generalizing the familiar nonlinear WM+1 algebra. Discrete Bäcklund transformations for SL (M+1, M−k) KdV are generated naturally from lattice translations in the underlying Toda-like hierarchy. As an application we demonstrate the equivalence of the two-matrix string model to the SL (M+1, 1) KdV hierarchy.


Author(s):  
C. J. Atkin

In a long sequence of notes in the Comptes Rendus and elsewhere, and in the papers [1], [2], [3], [6], [7], Lichnerowicz and his collaborators have studied the ‘classical infinite-dimensional Lie algebras’, their derivations, automorphisms, co-homology, and other properties. The most familiar of these algebras is the Lie algebra of C∞ vector fields on a C∞ manifold. Another is the Lie algebra of ‘Poisson brackets’, that is, of C∞ functions on a C∞ symplectic manifold, with the Poisson bracket as composition; some questions concerning this algebra are of considerable interest in the theory of quantization – see, for instance, [2] and [3].


Sign in / Sign up

Export Citation Format

Share Document