scholarly journals POSITIVE SOLUTIONS FOR A CLASS OF p(x)-LAPLACIAN PROBLEMS

2009 ◽  
Vol 51 (3) ◽  
pp. 571-578 ◽  
Author(s):  
G. A. AFROUZI ◽  
H. GHORBANI

AbstractWe consider the system where p(x), q(x) ∈ C1(RN) are radial symmetric functions such that sup|∇ p(x)| < ∞, sup|∇ q(x)| < ∞ and 1 < inf p(x) ≤ sup p(x) < ∞, 1 < inf q(x) ≤ sup q(x) < ∞, where −Δp(x)u = −div(|∇u|p(x)−2∇u), −Δq(x)v = −div(|∇v|q(x)−2∇v), respectively are called p(x)-Laplacian and q(x)-Laplacian, λ1, λ2, μ1 and μ2 are positive parameters and Ω = B(0, R) ⊂ RN is a bounded radial symmetric domain, where R is sufficiently large. We prove the existence of a positive solution when for every M > 0, $\lim_{u \rightarrow +\infty} \frac{h(u)}{u^{p^--1}} = 0$ and $\lim_{u \rightarrow +\infty} \frac{\gamma(u)}{u^{q^--1}} = 0$. In particular, we do not assume any sign conditions on f(0), g(0), h(0) or γ(0).

Author(s):  
D. D. Hai ◽  
R. Shivaji

Consider the system where λ is a positive parameter and Ω is a bounded domain in RN. We prove the existence of a large positive solution for λ large when limx → ∞ (f(Mg(x))/x) = 0 for every M > 0. In particular, we do not need any monotonicity assumptions on f, g, nor any sign conditions on f(0), g(0).


2015 ◽  
Vol 8 (1) ◽  
pp. 19-36
Author(s):  
Honghui Yin ◽  
Zuodong Yang

AbstractIn this paper, our main purpose is to establish the existence of positive solution of the following systemwhereare constants.F(x,u,υ) = λp(x)[g(x)a(u)+f(υ)],H(x,u,υ)=θq(x)[g1(x)b(υ)+h(u)], λ,θ>0 are parameters,p(x),q(x) are radial symmetric functions,is calledp(x)-Laplacian. We give the existence results and consider the asymptotic behavior of the solutions. In particular, we do not assume any symmetric condition, and we do not assume any sign condition onF(x,0,0) andH(x,0,0) either.


1999 ◽  
Vol 42 (2) ◽  
pp. 349-374 ◽  
Author(s):  
Ravi P. Agarwal ◽  
Martin Bohner ◽  
Patricia J. Y. Wong

We consider the following boundary value problemwhere λ > 0 and 1 ≤ p ≤ n – 1 is fixed. The values of λ are characterized so that the boundary value problem has a positive solution. Further, for the case λ = 1 we offer criteria for the existence of two positive solutions of the boundary value problem. Upper and lower bounds for these positive solutions are also established for special cases. Several examples are included to dwell upon the importance of the results obtained.


Author(s):  
Fenfei Chen ◽  
Miaoxin Yao

In this paper, the second-order nonlinear elliptic system with α, γ < 1 and β ≥ 1, is considered in RN, N ≥ 3. Under suitable hypotheses on functions fi, gi, hi (i = 1, 2) and P, it is shown that this system possesses an entire positive solution , 0 < θ < 1, such that both u and v are bounded below and above by constant multiples of |x|2−N for all |x| ≥ 1.


1977 ◽  
Vol 24 (2) ◽  
pp. 234-244 ◽  
Author(s):  
Athanassios G. Kartsatos

AbstractProperties of solutions of, are studied in the causeuH(t, u)>0 foru≠0. It is shown that two inequalities may always be associated with (I) in such a way that if one of these inequalities has a small positive solution and the other inequality has a small negative solution, then (I) is oscillatory. Further asymptotic properties of (I) are studied under assumptions involving intermediate antiderivativesP(i)(t), withP(n)=Q. Several results of this type ensure the non-existence of positive solutions of (I).


1993 ◽  
Vol 35 (1) ◽  
pp. 105-113 ◽  
Author(s):  
Thomas Kiventidis

AbstractWe establish a necessary and sufficient condition for the existence of a positive solution of the integrodifferential equationwhere nis an increasing real-valued function on the interval [0, α); that is, if and only if the characteristic equationadmits a positive root.Consider the difference equation , where is a sequence of non-negative numbers. We prove this has positive solution if and only if the characteristic equation admits a root in (0, 1). For general results on integrodifferential equations we refer to the book by Burton [1] and the survey article by Corduneanu and Lakshmikantham [2]. Existence of a positive solution and oscillations in integrodifferential equations or in systems of integrodifferential equations recently have been investigated by Ladas, Philos and Sficas [5], Györi and Ladas [4], Philos and Sficas [12], Philos [9], [10], [11].Recently, there has been some interest in the existence or the non-existence of positive solutions or the oscillation behavior of some difference equations. See Ladas, Philos and Sficas [6], [7].The purpose of this paper is to investigate the positive solutions of integrodifferential equations (Section 1) and difference equations (Section 2) with unbounded delay. We obtain also some results for integrodifferential and difference inequalities.


2010 ◽  
Vol 52 (3) ◽  
pp. 505-516 ◽  
Author(s):  
XIANLING FAN

AbstractConsider the p(x)-Laplacian–Dirichlet problem with sign-changing non-linearity of the form where Ω ⊂ ℝN is a bounded domain, p ∈ C0(Ω) and infx∈Ωp(x) > 1, m ∈ L∞(Ω) is non-negative, f : ℝ → ℝ is continuous and f(0) > 0, the coefficient a ∈ L∞(Ω) is sign-changing in (Ω). We give some sufficient conditions to assure the existence of a positive solution to the problem for sufficiently small λ > 0. Our results extend the corresponding results established in the p-Laplacian case to the p(x)-Laplacian case.


Author(s):  
Patricia J. Y. Wong ◽  
Ravi P. Agarwal

AbstractWe consider the (n, p) boundary value problemwhere λ > 0 and 0 ≤ p ≤ n - l is fixed. We characterize the values of λ such that the boundary value problem has a positive solution. For the special case λ = l, we also offer sufficient conditions for the existence of positive solutions of the boundary value problem.


Author(s):  
Xiyou Cheng ◽  
Lei Wei ◽  
Yimin Zhang

We consider the boundary Hardy–Hénon equation \[ -\Delta u=(1-|x|)^{\alpha} u^{p},\ \ x\in B_1(0), \] where $B_1(0)\subset \mathbb {R}^{N}$   $(N\geq 3)$ is a ball of radial $1$ centred at $0$ , $p>0$ and $\alpha \in \mathbb {R}$ . We are concerned with the estimate, existence and nonexistence of positive solutions of the equation, in particular, the equation with Dirichlet boundary condition. For the case $0< p<({N+2})/({N-2})$ , we establish the estimate of positive solutions. When $\alpha \leq -2$ and $p>1$ , we give some conclusions with respect to nonexistence. When $\alpha >-2$ and $1< p<({N+2})/({N-2})$ , we obtain the existence of positive solution for the corresponding Dirichlet problem. When $0< p\leq 1$ and $\alpha \leq -2$ , we show the nonexistence of positive solutions. When $0< p<1$ , $\alpha >-2$ , we give some results with respect to existence and uniqueness of positive solutions.


2018 ◽  
Vol 149 (04) ◽  
pp. 939-968
Author(s):  
Guowei Dai

AbstractWe use bifurcation and topological methods to investigate the existence/nonexistence and the multiplicity of positive solutions of the following quasilinear Schrödinger equation$$\left\{ {\matrix{ {-\Delta u-\kappa \Delta \left( {u^2} \right)u = \beta u-\lambda \Phi \left( {u^2} \right)u{\mkern 1mu} {\mkern 1mu} } \hfill &amp; {{\rm in}\;\Omega ,} \hfill \cr {u = 0} \hfill &amp; {{\rm on}\;\partial \Omega } \hfill \cr } } \right.$$involving sublinear/linear/superlinear nonlinearities at zero or infinity with/without signum condition. In particular, we study the changes in the structure of positive solution withκas the varying parameter.


Sign in / Sign up

Export Citation Format

Share Document